Initial commit
This commit is contained in:
348
Torque/SDK/engine/game/rigid.cc
Normal file
348
Torque/SDK/engine/game/rigid.cc
Normal file
@@ -0,0 +1,348 @@
|
||||
//-----------------------------------------------------------------------------
|
||||
// Torque Game Engine
|
||||
// Copyright (C) GarageGames.com, Inc.
|
||||
//-----------------------------------------------------------------------------
|
||||
|
||||
#include "game/rigid.h"
|
||||
#include "console/console.h"
|
||||
|
||||
|
||||
//----------------------------------------------------------------------------
|
||||
|
||||
Rigid::Rigid()
|
||||
{
|
||||
force = torque =
|
||||
linVelocity =
|
||||
linPosition =
|
||||
linMomentum =
|
||||
angVelocity =
|
||||
angMomentum = Point3F(0,0,0);
|
||||
angPosition.identity();
|
||||
invWorldInertia.identity();
|
||||
|
||||
centerOfMass = Point3F(0,0,0);
|
||||
worldCenterOfMass = linPosition;
|
||||
mass = oneOverMass = 1.0;
|
||||
invObjectInertia.identity();
|
||||
restitution = 0.3;
|
||||
friction = 0.5;
|
||||
atRest = false;
|
||||
}
|
||||
|
||||
void Rigid::clearForces()
|
||||
{
|
||||
force.set(0,0,0);
|
||||
torque.set(0,0,0);
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
void Rigid::integrate(F32 delta)
|
||||
{
|
||||
// Update Angular position
|
||||
F32 angle = angVelocity.len();
|
||||
if (angle != 0.0f) {
|
||||
QuatF dq;
|
||||
F32 sinHalfAngle;
|
||||
mSinCos(angle * delta * -0.5, sinHalfAngle, dq.w);
|
||||
sinHalfAngle *= 1 / angle;
|
||||
dq.x = angVelocity.x * sinHalfAngle;
|
||||
dq.y = angVelocity.y * sinHalfAngle;
|
||||
dq.z = angVelocity.z * sinHalfAngle;
|
||||
QuatF tmp = angPosition;
|
||||
angPosition.mul(tmp, dq);
|
||||
angPosition.normalize();
|
||||
|
||||
// Rotate the position around the center of mass
|
||||
Point3F lp = linPosition - worldCenterOfMass;
|
||||
dq.mulP(lp,&linPosition);
|
||||
linPosition += worldCenterOfMass;
|
||||
}
|
||||
|
||||
// Update angular momentum
|
||||
angMomentum = angMomentum + torque * delta;
|
||||
|
||||
// Update linear position, momentum
|
||||
linPosition = linPosition + linVelocity * delta;
|
||||
linMomentum = linMomentum + force * delta;
|
||||
linVelocity = linMomentum * oneOverMass;
|
||||
|
||||
// Update dependent state variables
|
||||
updateInertialTensor();
|
||||
updateVelocity();
|
||||
updateCenterOfMass();
|
||||
}
|
||||
|
||||
void Rigid::updateVelocity()
|
||||
{
|
||||
linVelocity.x = linMomentum.x * oneOverMass;
|
||||
linVelocity.y = linMomentum.y * oneOverMass;
|
||||
linVelocity.z = linMomentum.z * oneOverMass;
|
||||
invWorldInertia.mulV(angMomentum,&angVelocity);
|
||||
}
|
||||
|
||||
void Rigid::updateInertialTensor()
|
||||
{
|
||||
MatrixF iv,qmat;
|
||||
angPosition.setMatrix(&qmat);
|
||||
iv.mul(qmat,invObjectInertia);
|
||||
qmat.transpose();
|
||||
invWorldInertia.mul(iv,qmat);
|
||||
}
|
||||
|
||||
void Rigid::updateCenterOfMass()
|
||||
{
|
||||
// Move the center of mass into world space
|
||||
angPosition.mulP(centerOfMass,&worldCenterOfMass);
|
||||
worldCenterOfMass += linPosition;
|
||||
}
|
||||
|
||||
void Rigid::applyImpulse(const Point3F &r, const Point3F &impulse)
|
||||
{
|
||||
atRest = false;
|
||||
|
||||
// Linear momentum and velocity
|
||||
linMomentum += impulse;
|
||||
linVelocity.x = linMomentum.x * oneOverMass;
|
||||
linVelocity.y = linMomentum.y * oneOverMass;
|
||||
linVelocity.z = linMomentum.z * oneOverMass;
|
||||
|
||||
// Rotational momentum and velocity
|
||||
Point3F tv;
|
||||
mCross(r,impulse,&tv);
|
||||
angMomentum += tv;
|
||||
invWorldInertia.mulV(angMomentum, &angVelocity);
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/** Resolve collision with another rigid body
|
||||
Computes & applies the collision impulses needed to keep the bodies
|
||||
from interpenetrating.
|
||||
|
||||
tg: This function was commented out... I uncommented it, but haven't
|
||||
double checked the math.
|
||||
*/
|
||||
bool Rigid::resolveCollision(const Point3F& p, Point3F normal, Rigid* rigid)
|
||||
{
|
||||
atRest = false;
|
||||
Point3F v1,v2,r1,r2;
|
||||
getOriginVector(p,&r1);
|
||||
getVelocity(r1,&v1);
|
||||
rigid->getOriginVector(p,&r2);
|
||||
rigid->getVelocity(r2,&v2);
|
||||
|
||||
// Make sure they are converging
|
||||
F32 nv = mDot(v1,normal);
|
||||
nv -= mDot(v2,normal);
|
||||
if (nv > 0)
|
||||
return false;
|
||||
|
||||
// Compute impulse
|
||||
F32 d, n = -nv * (1 + restitution * rigid->restitution);
|
||||
Point3F a1,b1,c1;
|
||||
mCross(r1,normal,&a1);
|
||||
invWorldInertia.mulV(a1,&b1);
|
||||
mCross(b1,r1,&c1);
|
||||
|
||||
Point3F a2,b2,c2;
|
||||
mCross(r2,normal,&a2);
|
||||
rigid->invWorldInertia.mulV(a2,&b2);
|
||||
mCross(b2,r2,&c2);
|
||||
|
||||
Point3F c3 = c1 + c2;
|
||||
d = oneOverMass + rigid->oneOverMass + mDot(c3,normal);
|
||||
Point3F impulse = normal * (n / d);
|
||||
|
||||
applyImpulse(r1,impulse);
|
||||
impulse.neg();
|
||||
applyImpulse(r2,impulse);
|
||||
return true;
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/** Resolve collision with an immovable object
|
||||
Computes & applies the collision impulse needed to keep the body
|
||||
from penetrating the given surface.
|
||||
*/
|
||||
bool Rigid::resolveCollision(const Point3F& p, Point3F normal)
|
||||
{
|
||||
atRest = false;
|
||||
Point3F v,r;
|
||||
getOriginVector(p,&r);
|
||||
getVelocity(r,&v);
|
||||
F32 n = -mDot(v,normal);
|
||||
if (n >= 0) {
|
||||
|
||||
// Collision impulse, straight forward force stuff.
|
||||
F32 d = getZeroImpulse(r,normal);
|
||||
F32 j = n * (1 + restitution) * d;
|
||||
Point3F impulse = normal * j;
|
||||
|
||||
// Friction impulse, calculated as a function of the
|
||||
// amount of force it would take to stop the motion
|
||||
// perpendicular to the normal.
|
||||
Point3F uv = v + (normal * n);
|
||||
F32 ul = uv.len();
|
||||
if (ul) {
|
||||
uv /= -ul;
|
||||
F32 u = ul * getZeroImpulse(r,uv);
|
||||
j *= friction;
|
||||
if (u > j)
|
||||
u = j;
|
||||
impulse += uv * u;
|
||||
}
|
||||
|
||||
//
|
||||
applyImpulse(r,impulse);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
/** Calculate the inertia along the given vector
|
||||
This function can be used to calculate the amount of force needed to
|
||||
affect a change in velocity along the specified normal applied at
|
||||
the given point.
|
||||
*/
|
||||
F32 Rigid::getZeroImpulse(const Point3F& r,const Point3F& normal)
|
||||
{
|
||||
Point3F a,b,c;
|
||||
mCross(r,normal,&a);
|
||||
invWorldInertia.mulV(a,&b);
|
||||
mCross(b,r,&c);
|
||||
return 1 / (oneOverMass + mDot(c,normal));
|
||||
}
|
||||
|
||||
F32 Rigid::getKineticEnergy()
|
||||
{
|
||||
Point3F w;
|
||||
QuatF qmat = angPosition;
|
||||
qmat.inverse();
|
||||
qmat.mulP(angVelocity,&w);
|
||||
const F32* f = invObjectInertia;
|
||||
return 0.5 * ((mass * mDot(linVelocity,linVelocity)) +
|
||||
w.x * w.x / f[0] +
|
||||
w.y * w.y / f[5] +
|
||||
w.z * w.z / f[10]);
|
||||
}
|
||||
|
||||
void Rigid::getOriginVector(const Point3F &p,Point3F* r)
|
||||
{
|
||||
*r = p - worldCenterOfMass;
|
||||
}
|
||||
|
||||
void Rigid::setCenterOfMass(const Point3F &newCenter)
|
||||
{
|
||||
// Sets the center of mass relative to the origin.
|
||||
centerOfMass = newCenter;
|
||||
|
||||
// Update world center of mass
|
||||
angPosition.mulP(centerOfMass,&worldCenterOfMass);
|
||||
worldCenterOfMass += linPosition;
|
||||
}
|
||||
|
||||
void Rigid::translateCenterOfMass(const Point3F &oldPos,const Point3F &newPos)
|
||||
{
|
||||
// I + mass * (crossmatrix(centerOfMass)^2 - crossmatrix(newCenter)^2)
|
||||
MatrixF oldx,newx;
|
||||
oldx.setCrossProduct(oldPos);
|
||||
newx.setCrossProduct(newPos);
|
||||
for (int row = 0; row < 3; row++)
|
||||
for (int col = 0; col < 3; col++) {
|
||||
F32 n = newx(row,col), o = oldx(row,col);
|
||||
objectInertia(row,col) += mass * ((o * o) - (n * n));
|
||||
}
|
||||
|
||||
// Make sure the matrix is symetrical
|
||||
objectInertia(1,0) = objectInertia(0,1);
|
||||
objectInertia(2,0) = objectInertia(0,2);
|
||||
objectInertia(2,1) = objectInertia(1,2);
|
||||
}
|
||||
|
||||
void Rigid::getVelocity(const Point3F& r, Point3F* v)
|
||||
{
|
||||
mCross(angVelocity, r, v);
|
||||
*v += linVelocity;
|
||||
}
|
||||
|
||||
void Rigid::getTransform(MatrixF* mat)
|
||||
{
|
||||
angPosition.setMatrix(mat);
|
||||
mat->setColumn(3,linPosition);
|
||||
}
|
||||
|
||||
void Rigid::setTransform(const MatrixF& mat)
|
||||
{
|
||||
angPosition.set(mat);
|
||||
mat.getColumn(3,&linPosition);
|
||||
|
||||
// Update center of mass
|
||||
angPosition.mulP(centerOfMass,&worldCenterOfMass);
|
||||
worldCenterOfMass += linPosition;
|
||||
}
|
||||
|
||||
|
||||
//----------------------------------------------------------------------------
|
||||
/** Set the rigid body moment of inertia
|
||||
The moment is calculated as a box with the given dimensions.
|
||||
*/
|
||||
void Rigid::setObjectInertia(const Point3F& r)
|
||||
{
|
||||
// Rotational moment of inertia of a box
|
||||
F32 ot = mass / 12;
|
||||
F32 a = r.x * r.x;
|
||||
F32 b = r.y * r.y;
|
||||
F32 c = r.z * r.z;
|
||||
|
||||
objectInertia.identity();
|
||||
F32* f = objectInertia;
|
||||
f[0] = ot * (b + c);
|
||||
f[5] = ot * (c + a);
|
||||
f[10] = ot * (a + b);
|
||||
|
||||
invertObjectInertia();
|
||||
updateInertialTensor();
|
||||
}
|
||||
|
||||
|
||||
//----------------------------------------------------------------------------
|
||||
/** Set the rigid body moment of inertia
|
||||
The moment is calculated as a unit sphere.
|
||||
*/
|
||||
void Rigid::setObjectInertia()
|
||||
{
|
||||
objectInertia.identity();
|
||||
F32 radius = 1;
|
||||
F32* f = objectInertia;
|
||||
f[0] = f[5] = f[10] = (0.4 * mass * radius * radius);
|
||||
invertObjectInertia();
|
||||
updateInertialTensor();
|
||||
}
|
||||
|
||||
void Rigid::invertObjectInertia()
|
||||
{
|
||||
invObjectInertia = objectInertia;
|
||||
invObjectInertia.fullInverse();
|
||||
}
|
||||
|
||||
|
||||
//----------------------------------------------------------------------------
|
||||
|
||||
bool Rigid::checkRestCondition()
|
||||
{
|
||||
// F32 k = getKineticEnergy(mWorldToObj);
|
||||
// F32 G = -force.z * oneOverMass * 0.032;
|
||||
// F32 Kg = 0.5 * mRigid.mass * G * G;
|
||||
// if (k < Kg * restTol)
|
||||
// mRigid.setAtRest();
|
||||
return atRest;
|
||||
}
|
||||
|
||||
void Rigid::setAtRest()
|
||||
{
|
||||
atRest = true;
|
||||
linVelocity =
|
||||
linMomentum =
|
||||
angVelocity =
|
||||
angMomentum =
|
||||
Point3F(0,0,0);
|
||||
}
|
||||
Reference in New Issue
Block a user