Initial commit
This commit is contained in:
384
Torque/SDK/lib/maxsdk40/IKHierarchy.h
Normal file
384
Torque/SDK/lib/maxsdk40/IKHierarchy.h
Normal file
@@ -0,0 +1,384 @@
|
||||
/**********************************************************************
|
||||
*<
|
||||
FILE: IKHierarchy.h
|
||||
|
||||
DESCRIPTION: Geometrical representation of the ik problem. Note that
|
||||
this file should not dependent on Max SDK, except for
|
||||
some math classes, such as Matrix3, Point3, etc.
|
||||
|
||||
CREATED BY: Jianmin Zhao
|
||||
|
||||
HISTORY: created 16 March 2000
|
||||
|
||||
*> Copyright (c) 1994, All Rights Reserved.
|
||||
**********************************************************************/
|
||||
#ifndef __IKHierarchy__H
|
||||
#define __IKHierarchy__H
|
||||
|
||||
namespace IKSys {
|
||||
class ZeroPlaneMap {
|
||||
public:
|
||||
virtual Point3 operator()(const Point3& EEAxis) const =0;
|
||||
virtual ~ZeroPlaneMap() {}
|
||||
};
|
||||
|
||||
// A LinkChain consists of a RootLink and a number of Links.
|
||||
// A RootLink consists of a rotation plus a rigidExtend. It transforms
|
||||
// like this:
|
||||
// To_Coordinate_Frame = rigidExtend * rotXYZ * From_Coordinate_Frame.
|
||||
// where rotXYZ = Rot_x(rotXYZ[0]) * Rot_y(rotXYZ[1]) * Rot_z(rotXYZ[2]).
|
||||
//
|
||||
// * Note that not all the x, y, and z, are degrees of freedom. Only
|
||||
// Active() ones are. We put the whole rotation here so that some
|
||||
// solver may choose to use it as a full rotation and then clamp the
|
||||
// result to the permissible range.
|
||||
//
|
||||
// * LinkMatrix(bool include_rot) returns rigidExtend if include_rot is
|
||||
// false and returns the whole matrix from the From_Coordinate_Fram to
|
||||
// To_Coordinate_Frame, i.e., rigidExtend*rotXYZ.rotXYZ are not all degrees of freedom. Only the active ones are.
|
||||
//
|
||||
// * Matrix3& ApplyLinkMatrix(Matrix3& mat, bool) applies the LinkMatrix() to
|
||||
// the input matrix from the left, i.e., mat = LinkMatrix(bool)*mat,
|
||||
// and returns the reference to the input matrix.
|
||||
//
|
||||
// * Matrix3& RotateByAxis(Matrix3&, unsigned i) pre-applies the
|
||||
// rotation about x, y, or z (corresponding to i=0,1,or 2).
|
||||
// Therefore, starting with the identity matrix, mat,
|
||||
// ApplyLinkMatrix(
|
||||
// RotateByAxis(
|
||||
// RotateByAxis(
|
||||
// RotateByAxis(mat, 2),
|
||||
// 1),
|
||||
// 0),
|
||||
// false)
|
||||
// should equal to LinkMatrix(true).
|
||||
//
|
||||
class RootLink {
|
||||
public:
|
||||
RootLink():flags(7){} // x,y,z, are all active. No joint limits.
|
||||
Point3 rotXYZ;
|
||||
Point3 initXYZ;
|
||||
Point3 llimits;
|
||||
Point3 ulimits;
|
||||
Matrix3 rigidExtend;
|
||||
bool GetActive(unsigned i) const { return flags&(1<<i)?true:false;}
|
||||
bool GetLLimited(unsigned i) const { return flags&(1<<(i+3))?true:false;}
|
||||
bool GetULimited(unsigned i) const { return flags&(1<<(i+6))?true:false;}
|
||||
Matrix3& RotateByAxis(Matrix3& mat, unsigned i) const;
|
||||
Matrix3 LinkMatrix(bool include_rot) const;
|
||||
Matrix3& ApplyLinkMatrix(Matrix3& mat, bool include_rot) const;
|
||||
// Set methods:
|
||||
//
|
||||
void SetActive(unsigned i, bool s);
|
||||
void SetLLimited(unsigned i, bool s);
|
||||
void SetULimited(unsigned i, bool s);
|
||||
private:
|
||||
unsigned flags;
|
||||
};
|
||||
|
||||
// A Link is a 1-dof rotation followed by a rigidExtend. The dof
|
||||
// axis is specified by dofAxis. It is always active.
|
||||
//
|
||||
// * LinkMatrix(true) == rigidExtend * Rotation(dofAxis, dofValue).
|
||||
// LinkMatrix(false) == rigidExtend.
|
||||
//
|
||||
// * Matrix3& ApplyLinkMatrix(Matrix3& mat, bool) pre-applies the
|
||||
// LinkMatrix(bool) to the input matrix, mat.
|
||||
//
|
||||
// * A typical 3-dof (xyz) joint is decomposed into three links. z and
|
||||
// y dofs don't have rigid extension, called NullLink(). Let's use
|
||||
// ++o
|
||||
// to denote NullLink() and
|
||||
// ---o
|
||||
// to denote !NullLink(). Then, a 3-dof joint will be decomposed into
|
||||
// three Links, as:
|
||||
// ---o++o++o
|
||||
// x y z
|
||||
//
|
||||
// * For an xyz rotation joint, if y is not active (Active unchecked),
|
||||
// then y will be absorbed into the z-link, as:
|
||||
// ---o---o
|
||||
// x z
|
||||
// In this case, the z-link is not NullLink(). But its length is
|
||||
// zero. It is called ZeroLengh() link.
|
||||
//
|
||||
class Link {
|
||||
public:
|
||||
Link():rigidExtend(0),dofAxis(RotZ){}
|
||||
~Link(){if (rigidExtend) delete rigidExtend; rigidExtend = 0;}
|
||||
enum DofAxis {
|
||||
TransX,
|
||||
TransY,
|
||||
TransZ,
|
||||
RotX,
|
||||
RotY,
|
||||
RotZ
|
||||
};
|
||||
DofAxis dofAxis;
|
||||
float dofValue;
|
||||
float initValue;
|
||||
Point2 limits;
|
||||
bool NullLink() const {return rigidExtend?false:true;}
|
||||
bool ZeroLength() const {
|
||||
return NullLink() ? true :
|
||||
(rigidExtend->GetIdentFlags() & POS_IDENT) ? true : false; }
|
||||
bool LLimited() const { return llimited?true:false; }
|
||||
bool ULimited() const { return ulimited?true:false; }
|
||||
Matrix3 DofMatrix() const;
|
||||
Matrix3& DofMatrix(Matrix3& mat) const;
|
||||
Matrix3 LinkMatrix(bool include_dof =true) const;
|
||||
Matrix3& ApplyLinkMatrix(Matrix3& mat, bool include_dof =true) const;
|
||||
// Set methods:
|
||||
//
|
||||
void SetLLimited(bool s) { llimited = s?1:0; }
|
||||
void SetULimited(bool s) { ulimited = s?1:0; }
|
||||
void SetRigidExtend(const Matrix3& mat);
|
||||
private:
|
||||
Matrix3* rigidExtend;
|
||||
byte llimited : 1;
|
||||
byte ulimited : 1;
|
||||
};
|
||||
|
||||
// A LinkChain consists of a RootLink and LinkCount() of Links.
|
||||
//
|
||||
// * parentMatrix is where the root joint starts with respect to the
|
||||
// world. It should not concern the solver. Solvers should derive their
|
||||
// solutions in the parent space.
|
||||
//
|
||||
// * goal is represented in the parent space, i.e.,
|
||||
// goal_in_world = goal * parentMatrix
|
||||
//
|
||||
// * Bone(): The Link of index i may be a NullLink(). Bone(i) gives
|
||||
// the index j so that j >= i and LinkOf(j).NullLink() is false. If j
|
||||
// >= LinkCount() means that the chain ends up with NullLink().
|
||||
//
|
||||
// * PreBone(i) gives the index, j, so that j < i and LinkOf(j) is not
|
||||
// NullLink(). For the following 3-dof joint:
|
||||
// ---o++o++o---o
|
||||
// i
|
||||
// Bone(i) == i+1, and PreBone(i) == i-2. Therefore, degrees of
|
||||
// freedom of LinkOf(i) == Bone(i) - PreBone(i).
|
||||
//
|
||||
// * A typical two bone chain with elbow being a ball joint has this
|
||||
// structure:
|
||||
// ---o++o++o---O
|
||||
// 2 1 0 rootLink
|
||||
// It has 3 links in addition to the root link.
|
||||
//
|
||||
// * A two-bone chain with the elbow being a hinge joint has this
|
||||
// structure:
|
||||
// ---o---O
|
||||
// 0 rootLink
|
||||
// It has one link. Geometrically, the axis of LinkOf(0) should be
|
||||
// perpendicular to the two bones.
|
||||
//
|
||||
// * The matrix at the end effector is
|
||||
// End_Effector_matrix == LinkOf(n-1).LinkMatrix(true) * ... *
|
||||
// LinkOf(0).LinkMatrix(true) * rootLink.LinkMatrix(true).
|
||||
//
|
||||
// * swivelAngle, chainNormal, and defaultZeroMap concerns solvers that
|
||||
// answer true to IKSolver::UseSwivelAngle().
|
||||
//
|
||||
// * chainNormal is the normal to the plane that is intrinsic to the
|
||||
// chain when it is constructed. It is represented in the object space
|
||||
// of the root joint.
|
||||
//
|
||||
// * A zero-map is a map that maps the end effector axis (EEA) to a
|
||||
// plane normal perpendicular to the EEA. The IK System will provide a
|
||||
// default one to the solver. However, a solver may choose to use its
|
||||
// own.
|
||||
//
|
||||
// * Given the swivelAngle, the solver is asked to adjust the rotation
|
||||
// at the root joint, root_joint_rotation, so that:
|
||||
// (A) EEA stays fixed
|
||||
// (B) chainNormal * root_joint_rotation
|
||||
// == zeroMap(EEA) * RotationAboutEEA(swivelAngle)
|
||||
// By definition, zeroMap(EEA) is always perpendicular to EEA. At the
|
||||
// initial pose, chainNormal is also guarranteed to be perpendicular
|
||||
// to zeroMap(EEA). When it is not, root_joint_rotation has to
|
||||
// maintain (A) absolutely and satisfy (B) as good as it is possible.
|
||||
//
|
||||
class LinkChain {
|
||||
public:
|
||||
enum SAParentSpace {
|
||||
kSAInGoal,
|
||||
kSAInStartJoint
|
||||
};
|
||||
|
||||
LinkChain():links(0),linkCount(0),defaultZeroMap(0),swivelAngle(0){}
|
||||
LinkChain(unsigned lc):linkCount(lc),defaultZeroMap(0),swivelAngle(0)
|
||||
{links = new Link[lc];}
|
||||
virtual ~LinkChain(){delete[] links; links = NULL;}
|
||||
virtual void* GetInterface(ULONG i) const { return NULL; }
|
||||
Matrix3 parentMatrix;
|
||||
RootLink rootLink;
|
||||
const Link& LinkOf(unsigned i) const {return links[i];}
|
||||
Link& LinkOf(unsigned i) {return links[i];}
|
||||
unsigned LinkCount() const { return linkCount; }
|
||||
int PreBone(unsigned i) const;
|
||||
unsigned Bone(unsigned i) const;
|
||||
bool useVHTarget;
|
||||
union {
|
||||
float swivelAngle;
|
||||
float vhTarget[3];
|
||||
};
|
||||
SAParentSpace swivelAngleParent;
|
||||
Point3 chainNormal; // plane normal
|
||||
const ZeroPlaneMap* defaultZeroMap;
|
||||
Matrix3 goal;
|
||||
protected:
|
||||
void SetLinkCount(unsigned lc){
|
||||
delete links;
|
||||
linkCount = lc;
|
||||
links = new Link[linkCount];}
|
||||
private:
|
||||
Link* links;
|
||||
unsigned linkCount;
|
||||
};
|
||||
|
||||
// Inlines:
|
||||
//
|
||||
inline void RootLink::SetActive(unsigned i, bool s)
|
||||
{
|
||||
unsigned mask = 1 << i;
|
||||
if (s) flags |= mask;
|
||||
else flags &= ~mask;
|
||||
}
|
||||
|
||||
inline void RootLink::SetLLimited(unsigned i, bool s)
|
||||
{
|
||||
unsigned mask = 1 << (3 + i);
|
||||
if (s) flags |= mask;
|
||||
else flags &= ~mask;
|
||||
}
|
||||
|
||||
inline void RootLink::SetULimited(unsigned i, bool s)
|
||||
{
|
||||
unsigned mask = 1 << (6 + i);
|
||||
if (s) flags |= mask;
|
||||
else flags &= ~mask;
|
||||
}
|
||||
|
||||
inline Matrix3& RootLink::RotateByAxis(Matrix3& mat, unsigned i) const
|
||||
{
|
||||
switch (i) {
|
||||
case 0: mat.PreRotateX(rotXYZ[0]); return mat;
|
||||
case 1: mat.PreRotateY(rotXYZ[1]); return mat;
|
||||
case 2: mat.PreRotateZ(rotXYZ[2]); return mat;
|
||||
default: return mat;
|
||||
}
|
||||
}
|
||||
|
||||
inline Matrix3& RootLink::ApplyLinkMatrix(Matrix3& mat, bool include_rot) const
|
||||
{
|
||||
if (include_rot) {
|
||||
RotateByAxis(mat, 2);
|
||||
RotateByAxis(mat, 1);
|
||||
RotateByAxis(mat, 0);
|
||||
}
|
||||
mat = rigidExtend * mat;
|
||||
return mat;
|
||||
}
|
||||
|
||||
inline Matrix3 RootLink::LinkMatrix(bool include_rot) const
|
||||
{
|
||||
Matrix3 mat(TRUE);
|
||||
return ApplyLinkMatrix(mat, include_rot);
|
||||
}
|
||||
|
||||
inline void Link::SetRigidExtend(const Matrix3& mat)
|
||||
{
|
||||
if (mat.IsIdentity()) {
|
||||
if (rigidExtend) {
|
||||
delete rigidExtend;
|
||||
rigidExtend = NULL;
|
||||
}
|
||||
} else {
|
||||
if (rigidExtend) *rigidExtend = mat;
|
||||
else rigidExtend = new Matrix3(mat);
|
||||
}
|
||||
}
|
||||
|
||||
inline Matrix3 Link::DofMatrix() const
|
||||
{
|
||||
switch (dofAxis) {
|
||||
case TransX:
|
||||
case TransY:
|
||||
case TransZ:
|
||||
{
|
||||
Point3 p(0.0f,0.0f,0.0f);
|
||||
p[dofAxis] = dofValue;
|
||||
return TransMatrix(p);
|
||||
}
|
||||
case RotX:
|
||||
return RotateXMatrix(dofValue);
|
||||
case RotY:
|
||||
return RotateYMatrix(dofValue);
|
||||
case RotZ:
|
||||
return RotateZMatrix(dofValue);
|
||||
default:
|
||||
return Matrix3(1);
|
||||
}
|
||||
}
|
||||
|
||||
inline Matrix3& Link::DofMatrix(Matrix3& mat) const
|
||||
{
|
||||
switch (dofAxis) {
|
||||
case TransX:
|
||||
case TransY:
|
||||
case TransZ:
|
||||
{
|
||||
Point3 p(0.0f,0.0f,0.0f);
|
||||
p[dofAxis] = dofValue;
|
||||
mat.PreTranslate(p);
|
||||
}
|
||||
return mat;
|
||||
case RotX:
|
||||
mat.PreRotateX(dofValue); return mat;
|
||||
case RotY:
|
||||
mat.PreRotateY(dofValue); return mat;
|
||||
case RotZ:
|
||||
mat.PreRotateZ(dofValue); return mat;
|
||||
default:
|
||||
return mat;
|
||||
}
|
||||
}
|
||||
|
||||
inline Matrix3 Link::LinkMatrix(bool include_dof) const
|
||||
{
|
||||
Matrix3 ret;
|
||||
if (include_dof) {
|
||||
ret = DofMatrix();
|
||||
ApplyLinkMatrix(ret, false);
|
||||
} else {
|
||||
ret = rigidExtend ? *rigidExtend : Matrix3(1);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
inline Matrix3& Link::ApplyLinkMatrix(Matrix3& mat, bool include_dof) const
|
||||
// premultiply mat
|
||||
{
|
||||
if (include_dof) DofMatrix(mat);
|
||||
if (rigidExtend) mat = *rigidExtend * mat;
|
||||
return mat;
|
||||
}
|
||||
|
||||
inline int LinkChain::PreBone(unsigned i) const
|
||||
// return number < i. Returning -1 means that the previous bone is the root
|
||||
// link.
|
||||
{
|
||||
for (int j = i - 1; j >= 0; --j)
|
||||
if (!links[j].ZeroLength()) break;
|
||||
return j;
|
||||
}
|
||||
|
||||
inline unsigned LinkChain::Bone(unsigned i) const
|
||||
// return number >= i.
|
||||
{
|
||||
for (size_t j = i; j < linkCount; ++j)
|
||||
if (!links[j].ZeroLength()) break;
|
||||
return j;
|
||||
}
|
||||
}; // namespace IKSys
|
||||
#endif __IKHierarchy__H
|
||||
Reference in New Issue
Block a user