//----------------------------------------------------------------------------- // Torque Game Engine // Copyright (C) GarageGames.com, Inc. //----------------------------------------------------------------------------- #include "platform/platform.h" #include "dgl/dgl.h" #include "math/mMath.h" #include "console/console.h" #include "collision/extrudedPolyList.h" #include "collision/polyhedron.h" #include "collision/collision.h" // Minimum distance from a face F32 ExtrudedPolyList::FaceEpsilon = 0.01f; // Value used to compare collision times F32 ExtrudedPolyList::EqualEpsilon = 0.0001f; ExtrudedPolyList::ExtrudedPolyList() { VECTOR_SET_ASSOCIATION(mVertexList); VECTOR_SET_ASSOCIATION(mIndexList); VECTOR_SET_ASSOCIATION(mExtrudedList); VECTOR_SET_ASSOCIATION(mPlaneList); VECTOR_SET_ASSOCIATION(mPolyPlaneList); mVelocity.set(0.0f,0.0f,0.0f); mIndexList.reserve(128); mVertexList.reserve(64); mPolyPlaneList.reserve(64); mPlaneList.reserve(64); mCollisionList = 0; } ExtrudedPolyList::~ExtrudedPolyList() { } //---------------------------------------------------------------------------- bool ExtrudedPolyList::isEmpty() const { return mCollisionList->count == 0; } //---------------------------------------------------------------------------- void ExtrudedPolyList::extrude(const Polyhedron& pt, const VectorF& vector) { // Clear state mIndexList.clear(); mVertexList.clear(); mPlaneList.clear(); mPolyPlaneList.clear(); // Determine which faces will be extruded. mExtrudedList.setSize(pt.planeList.size()); for (U32 f = 0; f < pt.planeList.size(); f++) { const PlaneF& face = pt.planeList[f]; ExtrudedFace& eface = mExtrudedList[f]; F32 dot = mDot(face,vector); eface.active = dot > EqualEpsilon; if (eface.active) { eface.maxDistance = dot; eface.plane = face; eface.planeMask = BIT(mPlaneList.size()); // Add the face as a plane to clip against. mPlaneList.increment(2); PlaneF* plane = mPlaneList.end() - 2; plane[0] = plane[1] = face; plane[0].invert(); } } // Produce extruded planes for bounding and internal edges for (U32 e = 0; e < pt.edgeList.size(); e++) { Polyhedron::Edge const& edge = pt.edgeList[e]; ExtrudedFace& ef1 = mExtrudedList[edge.face[0]]; ExtrudedFace& ef2 = mExtrudedList[edge.face[1]]; if (ef1.active || ef2.active) { // Assumes that the edge points are clockwise // for face[0]. const Point3F& p1 = pt.pointList[edge.vertex[1]]; const Point3F &p2 = pt.pointList[edge.vertex[0]]; Point3F p3 = p2 + vector; mPlaneList.increment(2); PlaneF* plane = mPlaneList.end() - 2; plane[0].set(p3,p2,p1); plane[1] = plane[0]; plane[1].invert(); U32 pmask = BIT(mPlaneList.size()-2); ef1.planeMask |= pmask; ef2.planeMask |= pmask << 1; } } } //---------------------------------------------------------------------------- void ExtrudedPolyList::setCollisionList(CollisionList* info) { mCollisionList = info; mCollisionList->count = 0; mCollisionList->t = 2; } //---------------------------------------------------------------------------- void ExtrudedPolyList::adjustCollisionTime() { if (!mCollisionList->count) return; mCollisionList->t = mClampF(mCollisionList->t, 0.f, 1.f); } //---------------------------------------------------------------------------- U32 ExtrudedPolyList::addPoint(const Point3F& p) { mVertexList.increment(); Vertex& v = mVertexList.last(); v.point.x = p.x * mScale.x; v.point.y = p.y * mScale.y; v.point.z = p.z * mScale.z; mMatrix.mulP(v.point); // Build the plane mask, planes come in pairs v.mask = 0; for (U32 i = 0; i < mPlaneList.size(); i ++) if (mPlaneList[i].distToPlane(v.point) >= 0.f) v.mask |= BIT(i); return mVertexList.size() - 1; } U32 ExtrudedPolyList::addPlane(const PlaneF& plane) { mPolyPlaneList.increment(); mPlaneTransformer.transform(plane, mPolyPlaneList.last()); return mPolyPlaneList.size() - 1; } //---------------------------------------------------------------------------- void ExtrudedPolyList::begin(U32 material, U32 /*surfaceKey*/) { mPoly.object = mCurrObject; mPoly.material = material; mIndexList.clear(); } void ExtrudedPolyList::plane(U32 v1, U32 v2, U32 v3) { mPoly.plane.set(mVertexList[v1].point, mVertexList[v2].point, mVertexList[v3].point); // We hope this isn't needed but we're leaving it in anyway -- BJG/EGH mPoly.plane.normalizeSafe(); } void ExtrudedPolyList::plane(const PlaneF& p) { mPlaneTransformer.transform(p, mPoly.plane); } void ExtrudedPolyList::plane(const U32 index) { AssertFatal(index < mPolyPlaneList.size(), "Out of bounds index!"); mPoly.plane = mPolyPlaneList[index]; } const PlaneF& ExtrudedPolyList::getIndexedPlane(const U32 index) { AssertFatal(index < mPolyPlaneList.size(), "Out of bounds index!"); return mPolyPlaneList[index]; } void ExtrudedPolyList::vertex(U32 vi) { mIndexList.push_back(vi); } void ExtrudedPolyList::end() { // Anything facing away from the mVelocity is rejected (and also // cap to max collisions) if (mDot(mPoly.plane, mNormalVelocity) > 0.f || mCollisionList->count >= CollisionList::MaxCollisions) return; // Test the built up poly (stored in mPoly) against all our extruded // faces. U32 cFaceCount = 0; ExtrudedFace* cFace[30]; bool cEdgeColl[30]; ExtrudedFace* face = mExtrudedList.begin(); ExtrudedFace* end = mExtrudedList.end(); for (; face != end; face++) { // Skip inactive.. if (!face->active) continue; // Update the dot product. face->faceDot = -mDot(face->plane,mPoly.plane); // Skip it if we're facing towards... if(face->faceDot <= 0.f) continue; // Test, and skip if colliding. if (!testPoly(*face)) continue; // Note collision. cFace[cFaceCount] = face; cEdgeColl[cFaceCount++] = false; } if (!cFaceCount) { face = mExtrudedList.begin(); end = mExtrudedList.end(); for (; face != end; face++) { // Don't need to do dot product second time, so just check if it's // active (we already did the dot product in the previous loop). if (!face->active) continue; // Skip it if we're facing away... if(face->faceDot > 0.f) continue; // Do collision as above. if (!testPoly(*face)) continue; // Note the collision. cFace[cFaceCount] = face; cEdgeColl[cFaceCount++] = true; } } // If we STILL don't have any collisions, just skip out. if (!cFaceCount) return; // Pick the best collision face based on best alignment with respective // face. face = cFace[0]; bool edge = cEdgeColl[0]; for (U32 f = 1; f < cFaceCount; f++) { if (cFace[f]->faceDot <= face->faceDot) continue; face = cFace[f]; edge = cEdgeColl[f]; } // Add it to the collision list if it's better and/or equal // to our current best. // Don't add it to the collision list if it's too far away. if (face->time > mCollisionList->t + EqualEpsilon || face->time >= 1.0f) return; if (face->time < mCollisionList->t - EqualEpsilon) { // If this is significantly closer than before, then clear out the // list, as it's a better match than the old stuff. mCollisionList->t = face->time; mCollisionList->count = 0; mCollisionList->maxHeight = face->height; } else { // Otherwise, just update some book-keeping stuff. if (face->height > mCollisionList->maxHeight) mCollisionList->maxHeight = face->height; } // Note the collision in our collision list. Collision& collision = mCollisionList->collision[mCollisionList->count++]; collision.point = face->point; collision.faceDot = face->faceDot; collision.face = face - mExtrudedList.begin(); collision.object = mPoly.object; collision.normal = mPoly.plane; collision.material = mPoly.material; } //---------------------------------------------------------------------------- bool ExtrudedPolyList::testPoly(ExtrudedFace& face) { // Build intial inside/outside plane masks U32 indexStart = 0; U32 indexEnd = mIndexList.size(); U32 oVertexSize = mVertexList.size(); U32 oIndexSize = mIndexList.size(); U32 frontMask = 0,backMask = 0; for (U32 i = indexStart; i < indexEnd; i++) { U32 mask = mVertexList[mIndexList[i]].mask & face.planeMask; frontMask |= mask; backMask |= ~mask; } // Clip the mPoly against the planes that bound the face... // Trivial accept if all the vertices are on the backsides of // all the planes. if (frontMask) { // Trivial reject if any plane not crossed has all it's points // on the front. U32 crossMask = frontMask & backMask; if (~crossMask & frontMask) return false; // Need to do some clipping for (U32 p=0; p < mPlaneList.size(); p++) { U32 pmask = BIT(p); U32 newStart = mIndexList.size(); // Only test against this plane if we have something // on both sides - otherwise skip. if (!(face.planeMask & crossMask & pmask)) continue; U32 i1 = indexEnd - 1; U32 mask1 = mVertexList[mIndexList[i1]].mask; for (U32 i2 = indexStart; i2 < indexEnd; i2++) { const U32 mask2 = mVertexList[mIndexList[i2]].mask; if ((mask1 ^ mask2) & pmask) { // Clip the edge against the plane. mVertexList.increment(); VectorF& v1 = mVertexList[mIndexList[i1]].point; VectorF& v2 = mVertexList[mIndexList[i2]].point; VectorF vv = v2 - v1; F32 t = -mPlaneList[p].distToPlane(v1) / mDot(mPlaneList[p],vv); mIndexList.push_back(mVertexList.size() - 1); Vertex& iv = mVertexList.last(); iv.point.x = v1.x + vv.x * t; iv.point.y = v1.y + vv.y * t; iv.point.z = v1.z + vv.z * t; iv.mask = 0; // Test against the remaining planes for (U32 i = p+1; i < mPlaneList.size(); i ++) { if (mPlaneList[i].distToPlane(iv.point) > 0.f) iv.mask |= BIT(i); } } if (!(mask2 & pmask)) { U32 index = mIndexList[i2]; mIndexList.push_back(index); } mask1 = mask2; i1 = i2; } // Check for degenerate indexStart = newStart; indexEnd = mIndexList.size(); if (mIndexList.size() - indexStart < 3) { mVertexList.setSize(oVertexSize); mIndexList.setSize(oIndexSize); return false; } } } // Find closest point on the mPoly Point3F bp; F32 bd = 1E30f; F32 height = -1E30f; for (U32 b = indexStart; b < indexEnd; b++) { Vertex& vertex = mVertexList[mIndexList[b]]; F32 dist = face.plane.distToPlane(vertex.point); if (dist <= bd) { bd = (dist < 0.0f)? 0.0f: dist; bp = vertex.point; } // Since we don't clip against the back plane, we'll // only include vertex heights that are within range. if (vertex.point.z > height && dist < face.maxDistance) height = vertex.point.z; } // Do extruded points for back-off. F32 oldBd=bd; for (U32 b = indexStart; b < indexEnd; b++) { Vertex& vertex = mVertexList[mIndexList[b]]; // Extrude out just a tad to make sure we don't end up getting too close to the // geometry and getting stuck - but cap it so we don't introduce error into long // sweeps. F32 dist = face.plane.distToPlane( vertex.point + Point3F(mPoly.plane) * getMin(face.maxDistance * 0.2f, 0.01f)); if (dist <= bd) { bd = (dist < 0.0f)? 0.0f: dist; bp = vertex.point; } } // Remove temporary data mVertexList.setSize(oVertexSize); mIndexList.setSize(oIndexSize); // Don't add it to the collision list if it's worse then our current best. if (oldBd >= face.maxDistance) return false; // Update our info and indicate we should add to the model. F32 oldT = oldBd / face.maxDistance; F32 pushBackT = bd / face.maxDistance; if(oldT - pushBackT > 0.1f) face.time = oldT - 0.1f; else face.time = pushBackT; face.height = height; face.point = bp; return true; } //---------------------------------------------------------------------------- void ExtrudedPolyList::render() { if (!mCollisionList) return; glBegin(GL_LINES); glColor3f(1.0f,1.0f,0.0f); for (U32 d = 0; d < mCollisionList->count; d++) { Collision& face = mCollisionList->collision[d]; Point3F ep = face.point; ep += face.normal; glVertex3fv(face.point); glVertex3fv(ep); } glEnd(); } //-------------------------------------------------------------------------- void ExtrudedPolyList::setVelocity(const VectorF& velocity) { mVelocity = velocity; if (velocity.isZero() == false) { mNormalVelocity = velocity; mNormalVelocity.normalize(); setInterestNormal(mNormalVelocity); } else { mNormalVelocity.set(0.0f, 0.0f, 0.0f); clearInterestNormal(); } }