//----------------------------------------------------------------------------- // Torque Game Engine // Copyright (C) GarageGames.com, Inc. //----------------------------------------------------------------------------- #include "platform/platform.h" #include "math/mMathFn.h" //-------------------------------------------------------------------------- #define EQN_EPSILON (1e-8) static inline void swap(F32 & a, F32 & b) { F32 t = b; b = a; a = t; } static inline F32 mCbrt(F32 val) { if(val < 0.f) return(-mPow(-val, F32(1.f/3.f))); else return(mPow(val, F32(1.f/3.f))); } static inline U32 mSolveLinear(F32 a, F32 b, F32 * x) { if(mIsZero(a)) return(0); x[0] = -b/a; return(1); } static U32 mSolveQuadratic_c(F32 a, F32 b, F32 c, F32 * x) { // really linear? if(mIsZero(a)) return(mSolveLinear(b, c, x)); // get the descriminant: (b^2 - 4ac) F32 desc = (b * b) - (4.f * a * c); // solutions: // desc < 0: two imaginary solutions // desc > 0: two real solutions (b +- sqrt(desc)) / 2a // desc = 0: one real solution (b / 2a) if(mIsZero(desc)) { x[0] = b / (2.f * a); return(1); } else if(desc > 0.f) { F32 sqrdesc = mSqrt(desc); F32 den = (2.f * a); x[0] = (-b + sqrdesc) / den; x[1] = (-b - sqrdesc) / den; if(x[1] < x[0]) swap(x[0], x[1]); return(2); } else return(0); } //-------------------------------------------------------------------------- // from Graphics Gems I: pp 738-742 U32 mSolveCubic_c(F32 a, F32 b, F32 c, F32 d, F32 * x) { if(mIsZero(a)) return(mSolveQuadratic(b, c, d, x)); // normal form: x^3 + Ax^2 + BX + C = 0 F32 A = b / a; F32 B = c / a; F32 C = d / a; // substitute x = y - A/3 to eliminate quadric term and depress // the cubic equation to (x^3 + px + q = 0) F32 A2 = A * A; F32 A3 = A2 * A; F32 p = (1.f/3.f) * (((-1.f/3.f) * A2) + B); F32 q = (1.f/2.f) * (((2.f/27.f) * A3) - ((1.f/3.f) * A * B) + C); // use Cardano's fomula to solve the depressed cubic F32 p3 = p * p * p; F32 q2 = q * q; F32 D = q2 + p3; U32 num = 0; if(mIsZero(D)) // 1 or 2 solutions { if(mIsZero(q)) // 1 triple solution { x[0] = 0.f; num = 1; } else // 1 single and 1 double { F32 u = mCbrt(-q); x[0] = 2.f * u; x[1] = -u; num = 2; } } else if(D < 0.f) // 3 solutions: casus irreducibilis { F32 phi = (1.f/3.f) * mAcos(-q / mSqrt(-p3)); F32 t = 2.f * mSqrt(-p); x[0] = t * mCos(phi); x[1] = -t * mCos(phi + (M_PI / 3.f)); x[2] = -t * mCos(phi - (M_PI / 3.f)); num = 3; } else // 1 solution { F32 sqrtD = mSqrt(D); F32 u = mCbrt(sqrtD - q); F32 v = -mCbrt(sqrtD + q); x[0] = u + v; num = 1; } // resubstitute F32 sub = (1.f/3.f) * A; for(U32 i = 0; i < num; i++) x[i] -= sub; // sort the roots for(S32 j = 0; j < (num - 1); j++) for(S32 k = j + 1; k < num; k++) if(x[k] < x[j]) swap(x[k], x[j]); return(num); } //-------------------------------------------------------------------------- // from Graphics Gems I: pp 738-742 U32 mSolveQuartic_c(F32 a, F32 b, F32 c, F32 d, F32 e, F32 * x) { if(mIsZero(a)) return(mSolveCubic(b, c, d, e, x)); // normal form: x^4 + ax^3 + bx^2 + cx + d = 0 F32 A = b / a; F32 B = c / a; F32 C = d / a; F32 D = e / a; // substitue x = y - A/4 to eliminate cubic term: // x^4 + px^2 + qx + r = 0 F32 A2 = A * A; F32 A3 = A2 * A; F32 A4 = A2 * A2; F32 p = ((-3.f/8.f) * A2) + B; F32 q = ((1.f/8.f) * A3) - ((1.f/2.f) * A * B) + C; F32 r = ((-3.f/256.f) * A4) + ((1.f/16.f) * A2 * B) - ((1.f/4.f) * A * C) + D; U32 num = 0; if(mIsZero(r)) // no absolute term: y(y^3 + py + q) = 0 { num = mSolveCubic(1.f, 0.f, p, q, x); x[num++] = 0.f; } else { // solve the resolvent cubic F32 q2 = q * q; a = 1.f; b = (-1.f/2.f) * p; c = -r; d = ((1.f/2.f) * r * p) - ((1.f/8.f) * q2); mSolveCubic(a, b, c, d, x); F32 z = x[0]; // build 2 quadratic equations from the one solution F32 u = (z * z) - r; F32 v = (2.f * z) - p; if(mIsZero(u)) u = 0.f; else if(u > 0.f) u = mSqrt(u); else return(0); if(mIsZero(v)) v = 0.f; else if(v > 0.f) v = mSqrt(v); else return(0); // solve the two quadratics a = 1.f; b = v; c = z - u; num = mSolveQuadratic(a, b, c, x); a = 1.f; b = -v; c = z + u; num += mSolveQuadratic(a, b, c, x + num); } // resubstitute F32 sub = (1.f/4.f) * A; for(U32 i = 0; i < num; i++) x[i] -= sub; // sort the roots for(S32 j = 0; j < (num - 1); j++) for(S32 k = j + 1; k < num; k++) if(x[k] < x[j]) swap(x[k], x[j]); return(num); } U32 (*mSolveQuadratic)( F32 a, F32 b, F32 c, F32* x ) = mSolveQuadratic_c; U32 (*mSolveCubic)( F32 a, F32 b, F32 c, F32 d, F32* x ) = mSolveCubic_c; U32 (*mSolveQuartic)( F32 a, F32 b, F32 c, F32 d, F32 e, F32* x ) = mSolveQuartic_c;