//----------------------------------------------------------------------------- // Torque Game Engine // Copyright (C) GarageGames.com, Inc. //----------------------------------------------------------------------------- #ifndef _MMATHFN_H_ #define _MMATHFN_H_ #ifndef _PLATFORM_H_ #include "platform/platform.h" #endif #ifndef _MCONSTANTS_H_ #include "math/mConstants.h" #endif #include // Remove a couple of annoying macros, if they are present (In VC 6, they are.) #ifdef min #undef min #endif #ifdef max #undef max #endif class MatrixF; class PlaneF; extern void MathConsoleInit(); //-------------------------------------- // Installable Library Prototypes extern S32 (*m_mulDivS32)(S32 a, S32 b, S32 c); extern U32 (*m_mulDivU32)(S32 a, S32 b, U32 c); extern F32 (*m_catmullrom)(F32 t, F32 p0, F32 p1, F32 p2, F32 p3); extern void (*m_point2F_normalize)(F32 *p); extern void (*m_point2F_normalize_f)(F32 *p, F32 len); extern void (*m_point2D_normalize)(F64 *p); extern void (*m_point2D_normalize_f)(F64 *p, F64 len); extern void (*m_point3F_normalize)(F32 *p); extern void (*m_point3F_normalize_f)(F32 *p, F32 len); extern void (*m_point3F_interpolate)(const F32 *from, const F32 *to, F32 factor, F32 *result); extern void (*m_point3D_normalize)(F64 *p); extern void (*m_point3D_normalize_f)(F64 *p, F64 len); extern void (*m_point3D_interpolate)(const F64 *from, const F64 *to, F64 factor, F64 *result); extern void (*m_point3F_bulk_dot)(const F32* refVector, const F32* dotPoints, const U32 numPoints, const U32 pointStride, F32* output); extern void (*m_point3F_bulk_dot_indexed)(const F32* refVector, const F32* dotPoints, const U32 numPoints, const U32 pointStride, const U32* pointIndices, F32* output); extern void (*m_quatF_set_matF)( F32 x, F32 y, F32 z, F32 w, F32* m ); extern void (*m_matF_set_euler)(const F32 *e, F32 *result); extern void (*m_matF_set_euler_point)(const F32 *e, const F32 *p, F32 *result); extern void (*m_matF_identity)(F32 *m); extern void (*m_matF_inverse)(F32 *m); extern void (*m_matF_affineInverse)(F32 *m); extern void (*m_matF_transpose)(F32 *m); extern void (*m_matF_scale)(F32 *m,const F32* p); extern void (*m_matF_normalize)(F32 *m); extern F32 (*m_matF_determinant)(const F32 *m); extern void (*m_matF_x_matF)(const F32 *a, const F32 *b, F32 *mresult); // extern void (*m_matF_x_point3F)(const F32 *m, const F32 *p, F32 *presult); // extern void (*m_matF_x_vectorF)(const F32 *m, const F32 *v, F32 *vresult); extern void (*m_matF_x_point4F)(const F32 *m, const F32 *p, F32 *presult); extern void (*m_matF_x_scale_x_planeF)(const F32 *m, const F32* s, const F32 *p, F32 *presult); extern void (*m_matF_x_box3F)(const F32 *m, F32 *min, F32 *max); // Note that x must point to at least 4 values for quartics, and 3 for cubics extern U32 (*mSolveQuadratic)(F32 a, F32 b, F32 c, F32* x); extern U32 (*mSolveCubic)(F32 a, F32 b, F32 c, F32 d, F32* x); extern U32 (*mSolveQuartic)(F32 a, F32 b, F32 c, F32 d, F32 e, F32* x); extern S32 mRandI(S32 i1, S32 i2); // random # from i1 to i2 inclusive extern F32 mRandF(F32 f1, F32 f2); // random # from f1 to f2 inclusive inline void m_matF_x_point3F(const F32 *m, const F32 *p, F32 *presult) { AssertFatal(p != presult, "Error, aliasing matrix mul pointers not allowed here!"); #if defined(TORQUE_SUPPORTS_GCC_INLINE_X86_ASM) // inline assembly version because gcc's math optimization isn't as good // JMQ: the profiler shows that with g++ 2.96, the difference // between the asm and optimized c versions is minimal. int u0, u1, u2; __asm__ __volatile__ ( "flds 0x8(%%eax)\n" "fmuls 0x8(%%ecx)\n" "flds 0x4(%%eax)\n" "fmuls 0x4(%%ecx)\n" "faddp %%st,%%st(1)\n" "flds (%%eax)\n" "fmuls (%%ecx)\n" "faddp %%st,%%st(1)\n" "fadds 0xc(%%eax)\n" "fstps (%%edx)\n" "flds 0x18(%%eax)\n" "fmuls 0x8(%%ecx)\n" "flds 0x10(%%eax)\n" "fmuls (%%ecx)\n" "faddp %%st,%%st(1)\n" "flds 0x14(%%eax)\n" "fmuls 0x4(%%ecx)\n" "faddp %%st,%%st(1)\n" "fadds 0x1c(%%eax)\n" "fstps 0x4(%%edx)\n" "flds 0x28(%%eax)\n" "fmuls 0x8(%%ecx)\n" "flds 0x20(%%eax)\n" "fmuls (%%ecx)\n" "faddp %%st,%%st(1)\n" "flds 0x24(%%eax)\n" "fmuls 0x4(%%ecx)\n" "faddp %%st,%%st(1)\n" "fadds 0x2c(%%eax)\n" "fstps 0x8(%%edx)\n" : "=&a" (u0), "=&c" (u1), "=&d" (u2) : "0" (m), "1" (p), "2" (presult) : "memory" ); #else presult[0] = m[0]*p[0] + m[1]*p[1] + m[2]*p[2] + m[3]; presult[1] = m[4]*p[0] + m[5]*p[1] + m[6]*p[2] + m[7]; presult[2] = m[8]*p[0] + m[9]*p[1] + m[10]*p[2] + m[11]; #endif } //-------------------------------------- inline void m_matF_x_vectorF(const F32 *m, const F32 *v, F32 *vresult) { AssertFatal(v != vresult, "Error, aliasing matrix mul pointers not allowed here!"); #if defined(TORQUE_SUPPORTS_GCC_INLINE_X86_ASM) // inline assembly version because gcc's math optimization isn't as good // JMQ: the profiler shows that with g++ 2.96, the difference // between the asm and optimized c versions is minimal. int u0, u1, u2; __asm__ __volatile__ ( "flds 0x8(%%ecx)\n" "fmuls 0x8(%%eax)\n" "flds 0x4(%%ecx)\n" "fmuls 0x4(%%eax)\n" "faddp %%st,%%st(1)\n" "flds (%%ecx)\n" "fmuls (%%eax)\n" "faddp %%st,%%st(1)\n" "fstps (%%edx)\n" "flds 0x18(%%ecx)\n" "fmuls 0x8(%%eax)\n" "flds 0x10(%%ecx)\n" "fmuls (%%eax)\n" "faddp %%st,%%st(1)\n" "flds 0x14(%%ecx)\n" "fmuls 0x4(%%eax)\n" "faddp %%st,%%st(1)\n" "fstps 0x4(%%edx)\n" "flds 0x28(%%ecx)\n" "fmuls 0x8(%%eax)\n" "flds 0x20(%%ecx)\n" "fmuls (%%eax)\n" "faddp %%st,%%st(1)\n" "flds 0x24(%%ecx)\n" "fmuls 0x4(%%eax)\n" "faddp %%st,%%st(1)\n" "fstps 0x8(%%edx)\n" : "=&c" (u0), "=&a" (u1), "=&d" (u2) : "0" (m), "1" (v), "2" (vresult) : "memory" ); #else vresult[0] = m[0]*v[0] + m[1]*v[1] + m[2]*v[2]; vresult[1] = m[4]*v[0] + m[5]*v[1] + m[6]*v[2]; vresult[2] = m[8]*v[0] + m[9]*v[1] + m[10]*v[2]; #endif } //-------------------------------------- // Inlines inline F32 mFloor(const F32 val) { return (F32) floor(val); } inline F32 mCeil(const F32 val) { return (F32) ceil(val); } inline F32 mFabs(const F32 val) { return (F32) fabs(val); } inline F32 mFmod(const F32 val, const F32 mod) { return (F32) fmod(val, mod); } inline S32 mAbs(const S32 val) { // Kinda lame, and disallows intrinsic inlining by the compiler. Maybe fix? // DMM if (val < 0) return -val; return val; } inline S32 mClamp(S32 val, S32 low, S32 high) { return getMax(getMin(val, high), low); } inline F32 mClampF(F32 val, F32 low, F32 high) { return (F32) getMax(getMin(val, high), low); } inline S32 mMulDiv(S32 a, S32 b, S32 c) { return m_mulDivS32(a, b, c); } inline U32 mMulDiv(S32 a, S32 b, U32 c) { return m_mulDivU32(a, b, c); } inline F32 mSin(const F32 angle) { return (F32) sin(angle); } inline F32 mCos(const F32 angle) { return (F32) cos(angle); } inline F32 mTan(const F32 angle) { return (F32) tan(angle); } inline F32 mAsin(const F32 val) { return (F32) asin(val); } inline F32 mAcos(const F32 val) { return (F32) acos(val); } inline F32 mAtan(const F32 x, const F32 y) { return (F32) atan2(x, y); } inline void mSinCos(const F32 angle, F32 &s, F32 &c) { s = mSin(angle); c = mCos(angle); } inline F32 mTanh(const F32 angle) { return (F32) tanh(angle); } inline F32 mSqrt(const F32 val) { return (F32) sqrt(val); } inline F32 mPow(const F32 x, const F32 y) { return (F32) pow(x, y); } inline F32 mLog(const F32 val) { return (F32) log(val); } inline F64 mSin(const F64 angle) { return (F64) sin(angle); } inline F64 mCos(const F64 angle) { return (F64) cos(angle); } inline F64 mTan(const F64 angle) { return (F64) tan(angle); } inline F64 mAsin(const F64 val) { return (F64) asin(val); } inline F64 mAcos(const F64 val) { return (F64) acos(val); } inline F64 mAtan(const F64 x, const F64 y) { return (F64) atan2(x, y); } inline void mSinCos(const F64 angle, F64 &sin, F64 &cos) { sin = mSin(angle); cos = mCos(angle); } inline F64 mTanh(const F64 angle) { return (F64) tanh(angle); } inline F64 mPow(const F64 x, const F64 y) { return (F64) pow(x, y); } inline F64 mLog(const F64 val) { return (F64) log(val); } inline F32 mCatmullrom(F32 t, F32 p0, F32 p1, F32 p2, F32 p3) { return m_catmullrom(t, p0, p1, p2, p3); } inline F64 mFabsD(const F64 val) { return (F64) fabs(val); } inline F64 mFmodD(const F64 val, const F64 mod) { return (F64) fmod(val, mod); } inline F64 mSqrtD(const F64 val) { return (F64) sqrt(val); } inline F64 mFloorD(const F64 val) { return (F64) floor(val); } inline F64 mCeilD(const F64 val) { return (F64) ceil(val); } //-------------------------------------- #ifndef _MPOINT_H_ #include "math/mPoint.h" #endif inline F32 mDot(const Point3F &p1, const Point3F &p2) { return (p1.x*p2.x + p1.y*p2.y + p1.z*p2.z); } inline void mCross(const Point3F &a, const Point3F &b, Point3F *res) { res->x = (a.y * b.z) - (a.z * b.y); res->y = (a.z * b.x) - (a.x * b.z); res->z = (a.x * b.y) - (a.y * b.x); } inline F64 mDot(const Point3D &p1, const Point3D &p2) { return (p1.x*p2.x + p1.y*p2.y + p1.z*p2.z); } inline void mCross(const Point3D &a, const Point3D &b, Point3D *res) { res->x = (a.y * b.z) - (a.z * b.y); res->y = (a.z * b.x) - (a.x * b.z); res->z = (a.x * b.y) - (a.y * b.x); } inline Point3F mCross(const Point3F &a, const Point3F &b) { Point3F ret; mCross(a,b,&ret); return ret; } inline void mCross(const F32* a, const F32* b, F32 *res) { res[0] = (a[1] * b[2]) - (a[2] * b[1]); res[1] = (a[2] * b[0]) - (a[0] * b[2]); res[2] = (a[0] * b[1]) - (a[1] * b[0]); } inline void mCross(const F64* a, const F64* b, F64* res) { res[0] = (a[1] * b[2]) - (a[2] * b[1]); res[1] = (a[2] * b[0]) - (a[0] * b[2]); res[2] = (a[0] * b[1]) - (a[1] * b[0]); } void mTransformPlane(const MatrixF& mat, const Point3F& scale, const PlaneF& plane, PlaneF* result); //-------------------------------------- inline F32 mDegToRad(F32 d) { return F32((d * M_PI) / F32(180)); } inline F32 mRadToDeg(F32 r) { return F32((r * 180.0) / M_PI); } inline F64 mDegToRad(F64 d) { return (d * M_PI) / F64(180); } inline F64 mRadToDeg(F64 r) { return (r * 180.0) / M_PI; } #endif //_MMATHFN_H_