//----------------------------------------------------------------------------- // Torque Game Engine // Copyright (C) GarageGames.com, Inc. //----------------------------------------------------------------------------- #include "ts/tsTransform.h" #include "core/stream.h" void Quat16::identity() { x = y = z = 0; w = MAX_VAL; } QuatF & Quat16::getQuatF( QuatF * q ) const { q->x = float( x ) / float(MAX_VAL); q->y = float( y ) / float(MAX_VAL); q->z = float( z ) / float(MAX_VAL); q->w = float( w ) / float(MAX_VAL); return *q; } void Quat16::set( const QuatF & q ) { x = (S16)(q.x * float(MAX_VAL)); y = (S16)(q.y * float(MAX_VAL)); z = (S16)(q.z * float(MAX_VAL)); w = (S16)(q.w * float(MAX_VAL)); } S32 Quat16::operator==( const Quat16 & q ) const { return( x == q.x && y == q.y && z == q.z && w == q.w ); } void Quat16::read(Stream * s) { s->read(&x); s->read(&y); s->read(&z); s->read(&w); } void Quat16::write(Stream * s) { s->write(x); s->write(y); s->write(z); s->write(w); } QuatF & TSTransform::interpolate( const QuatF & q1, const QuatF & q2, F32 interp, QuatF * q ) { F32 Dot; F32 Dist2; F32 OneOverL; F32 x1,y1,z1,w1; F32 x2,y2,z2,w2; // // This is a linear interpolation with a fast renormalization. // x1 = q1.x; y1 = q1.y; z1 = q1.z; w1 = q1.w; x2 = q2.x; y2 = q2.y; z2 = q2.z; w2 = q2.w; // Determine if quats are further than 90 degrees Dot = x1*x2 + y1*y2 + z1*z2 + w1*w2; // If dot is negative flip one of the quaterions if( Dot < 0.0f ) { x1 = -x1; y1 = -y1; z1 = -z1; w1 = -w1; } // Compute interpolated values x1 = x1 + interp*(x2 - x1); y1 = y1 + interp*(y2 - y1); z1 = z1 + interp*(z2 - z1); w1 = w1 + interp*(w2 - w1); // Get squared distance of new quaternion Dist2 = x1*x1 + y1*y1 + z1*z1 + w1*w1; // Use home-baked polynomial to compute 1/sqrt(Dist2) // since we know the range is 0.707 >= Dist2 <= 1.0 // we'll split in half. if( Dist2<0.857f ) OneOverL = (((0.699368f)*Dist2) + -1.819985f)*Dist2 + 2.126369f; //0.0000792 else OneOverL = (((0.454012f)*Dist2) + -1.403517f)*Dist2 + 1.949542f; //0.0000373 // Renormalize q->x = x1*OneOverL; q->y = y1*OneOverL; q->z = z1*OneOverL; q->w = w1*OneOverL; return *q; } void TSTransform::applyScale(F32 scale, MatrixF * mat) { mat->scale(Point3F(scale,scale,scale)); } void TSTransform::applyScale(const Point3F & scale, MatrixF * mat) { mat->scale(scale); } void TSTransform::applyScale(const TSScale & scale, MatrixF * mat) { MatrixF mat2; TSTransform::setMatrix(scale.mRotate,&mat2); MatrixF mat3(mat2); mat3.inverse(); mat2.scale(scale.mScale); mat2.mul(mat3); mat->mul(mat2); }