//----------------------------------------------------------------------------- // Torque Game Engine // Copyright (C) GarageGames.com, Inc. //----------------------------------------------------------------------------- #ifndef _MMATRIX_H_ #define _MMATRIX_H_ #ifndef _MMATH_H_ #include "math/mMath.h" #endif /// 4x4 Matrix Class /// /// This runs at F32 precision. class MatrixF { private: F32 m[16]; ///< Note: this is stored in ROW MAJOR format. OpenGL is /// COLUMN MAJOR. Transpose before sending down. public: /// Create an uninitialized matrix. /// /// @param identity If true, initialize to the identity matrix. explicit MatrixF(bool identity=false); /// Create a matrix to rotate about origin by e. /// @see set explicit MatrixF( const EulerF &e); /// Create a matrix to rotate about p by e. /// @see set MatrixF( const EulerF &e, const Point3F& p); /// Get the index in m to element in column i, row j /// /// This is necessary as we have m as a one dimensional array. /// /// @param i Column desired. /// @param j Row desired. static U32 idx(U32 i, U32 j) { return (i + j*4); } /// Initialize matrix to rotate about origin by e. MatrixF& set( const EulerF &e); /// Initialize matrix to rotate about p by e. MatrixF& set( const EulerF &e, const Point3F& p); /// Initialize matrix with a cross product of p. MatrixF& setCrossProduct( const Point3F &p); /// Initialize matrix with a tensor product of p. MatrixF& setTensorProduct( const Point3F &p, const Point3F& q); operator F32*() { return (m); } ///< Allow people to get at m. operator F32*() const { return (F32*)(m); } ///< Allow people to get at m. bool isAffine() const; ///< Check to see if this is an affine matrix. bool isIdentity() const; ///< Checks for identity matrix. /// Make this an identity matrix. MatrixF& identity(); /// Invert m. MatrixF& inverse(); /// Take inverse without disturbing position data. /// /// Ie, take inverse of 3x3 submatrix. MatrixF& affineInverse(); MatrixF& transpose(); ///< Swap rows and columns. MatrixF& scale(const Point3F& p); ///< M * Matrix(p) -> M EulerF toEuler() const; /// Compute the inverse of the matrix. /// /// Computes inverse of full 4x4 matrix. Returns false and performs no inverse if /// the determinant is 0. /// /// Note: In most cases you want to use the normal inverse function. This method should /// be used if the matrix has something other than (0,0,0,1) in the bottom row. bool fullInverse(); /// Swaps rows and columns into matrix. void transposeTo(F32 *matrix) const; /// Normalize the matrix. void normalize(); /// Copy the requested column into a Point4F. void getColumn(S32 col, Point4F *cptr) const; /// Copy the requested column into a Point3F. /// /// This drops the bottom-most row. void getColumn(S32 col, Point3F *cptr) const; /// Set the specified column from a Point4F. void setColumn(S32 col, const Point4F& cptr); /// Set the specified column from a Point3F. /// /// The bottom-most row is not set. void setColumn(S32 col, const Point3F& cptr); /// Copy the specified row into a Point4F. void getRow(S32 row, Point4F *cptr) const; /// Copy the specified row into a Point3F. /// /// Right-most item is dropped. void getRow(S32 row, Point3F *cptr) const; /// Set the specified row from a Point4F. void setRow(S32 row, const Point4F& cptr); /// Set the specified row from a Point3F. /// /// The right-most item is not set. void setRow(S32 row, const Point3F& cptr); /// Get the position of the matrix. /// /// This is the 4th column of the matrix. Point3F getPosition() const; /// Set the position of the matrix. /// /// This is the 4th column of the matrix. void setPosition( const Point3F &pos ){ setColumn( 3, pos ); } MatrixF& mul(const MatrixF &a); ///< M * a -> M MatrixF& mul(const MatrixF &a, const MatrixF &b); ///< a * b -> M // Scalar multiplies MatrixF& mul(const F32 a); ///< M * a -> M MatrixF& mul(const MatrixF &a, const F32 b); ///< a * b -> M void mul( Point4F& p ) const; ///< M * p -> p (full [4x4] * [1x4]) void mulP( Point3F& p ) const; ///< M * p -> p (assume w = 1.0f) void mulP( const Point3F &p, Point3F *d) const; ///< M * p -> d (assume w = 1.0f) void mulV( VectorF& p ) const; ///< M * v -> v (assume w = 0.0f) void mulV( const VectorF &p, Point3F *d) const; ///< M * v -> d (assume w = 0.0f) void mul(Box3F& b) const; ///< Axial box -> Axial Box /// Convenience function to allow people to treat this like an array. F32& operator ()(S32 row, S32 col) { return m[idx(col,row)]; } void dumpMatrix(const char *caption=NULL) const; } #if defined(__VEC__) __attribute__ ((aligned (16))) #endif ; //-------------------------------------- // Inline Functions inline MatrixF::MatrixF(bool _identity) { if (_identity) identity(); } inline MatrixF::MatrixF( const EulerF &e ) { set(e); } inline MatrixF::MatrixF( const EulerF &e, const Point3F& p ) { set(e,p); } inline MatrixF& MatrixF::set( const EulerF &e) { m_matF_set_euler( e, *this ); return (*this); } inline MatrixF& MatrixF::set( const EulerF &e, const Point3F& p) { m_matF_set_euler_point( e, p, *this ); return (*this); } inline MatrixF& MatrixF::setCrossProduct( const Point3F &p) { m[1] = -(m[4] = p.z); m[8] = -(m[2] = p.y); m[6] = -(m[9] = p.x); m[0] = m[3] = m[5] = m[7] = m[10] = m[11] = m[12] = m[13] = m[14] = 0.0f; m[15] = 1; return (*this); } inline MatrixF& MatrixF::setTensorProduct( const Point3F &p, const Point3F &q) { m[0] = p.x * q.x; m[1] = p.x * q.y; m[2] = p.x * q.z; m[4] = p.y * q.x; m[5] = p.y * q.y; m[6] = p.y * q.z; m[8] = p.z * q.x; m[9] = p.z * q.y; m[10] = p.z * q.z; m[3] = m[7] = m[11] = m[12] = m[13] = m[14] = 0.0f; m[15] = 1.0f; return (*this); } inline bool MatrixF::isIdentity() const { return m[0] == 1.0f && m[1] == 0.0f && m[2] == 0.0f && m[3] == 0.0f && m[4] == 0.0f && m[5] == 1.0f && m[6] == 0.0f && m[7] == 0.0f && m[8] == 0.0f && m[9] == 0.0f && m[10] == 1.0f && m[11] == 0.0f && m[12] == 0.0f && m[13] == 0.0f && m[14] == 0.0f && m[15] == 1.0f; } inline MatrixF& MatrixF::identity() { m[0] = 1.0f; m[1] = 0.0f; m[2] = 0.0f; m[3] = 0.0f; m[4] = 0.0f; m[5] = 1.0f; m[6] = 0.0f; m[7] = 0.0f; m[8] = 0.0f; m[9] = 0.0f; m[10] = 1.0f; m[11] = 0.0f; m[12] = 0.0f; m[13] = 0.0f; m[14] = 0.0f; m[15] = 1.0f; return (*this); } inline MatrixF& MatrixF::inverse() { m_matF_inverse(m); return (*this); } inline MatrixF& MatrixF::affineInverse() { // AssertFatal(isAffine() == true, "Error, this matrix is not an affine transform"); m_matF_affineInverse(m); return (*this); } inline MatrixF& MatrixF::transpose() { m_matF_transpose(m); return (*this); } inline MatrixF& MatrixF::scale(const Point3F& p) { m_matF_scale(m,p); return *this; } inline void MatrixF::normalize() { m_matF_normalize(m); } inline MatrixF& MatrixF::mul( const MatrixF &a ) { // M * a -> M MatrixF tempThis(*this); m_matF_x_matF(tempThis, a, *this); return (*this); } inline MatrixF& MatrixF::mul( const MatrixF &a, const MatrixF &b ) { // a * b -> M m_matF_x_matF(a, b, *this); return (*this); } inline MatrixF& MatrixF::mul(const F32 a) { for (U32 i = 0; i < 16; i++) m[i] *= a; return *this; } inline MatrixF& MatrixF::mul(const MatrixF &a, const F32 b) { *this = a; mul(b); return *this; } inline void MatrixF::mul( Point4F& p ) const { Point4F temp; m_matF_x_point4F(*this, &p.x, &temp.x); p = temp; } inline void MatrixF::mulP( Point3F& p) const { // M * p -> d Point3F d; m_matF_x_point3F(*this, &p.x, &d.x); p = d; } inline void MatrixF::mulP( const Point3F &p, Point3F *d) const { // M * p -> d m_matF_x_point3F(*this, &p.x, &d->x); } inline void MatrixF::mulV( VectorF& v) const { // M * v -> v VectorF temp; m_matF_x_vectorF(*this, &v.x, &temp.x); v = temp; } inline void MatrixF::mulV( const VectorF &v, Point3F *d) const { // M * v -> d m_matF_x_vectorF(*this, &v.x, &d->x); } inline void MatrixF::mul(Box3F& b) const { m_matF_x_box3F(*this, &b.min.x, &b.max.x); } inline void MatrixF::getColumn(S32 col, Point4F *cptr) const { cptr->x = m[col]; cptr->y = m[col+4]; cptr->z = m[col+8]; cptr->w = m[col+12]; } inline void MatrixF::getColumn(S32 col, Point3F *cptr) const { cptr->x = m[col]; cptr->y = m[col+4]; cptr->z = m[col+8]; } inline void MatrixF::setColumn(S32 col, const Point4F &cptr) { m[col] = cptr.x; m[col+4] = cptr.y; m[col+8] = cptr.z; m[col+12]= cptr.w; } inline void MatrixF::setColumn(S32 col, const Point3F &cptr) { m[col] = cptr.x; m[col+4] = cptr.y; m[col+8] = cptr.z; } inline void MatrixF::getRow(S32 col, Point4F *cptr) const { col *= 4; cptr->x = m[col++]; cptr->y = m[col++]; cptr->z = m[col++]; cptr->w = m[col]; } inline void MatrixF::getRow(S32 col, Point3F *cptr) const { col *= 4; cptr->x = m[col++]; cptr->y = m[col++]; cptr->z = m[col]; } inline void MatrixF::setRow(S32 col, const Point4F &cptr) { col *= 4; m[col++] = cptr.x; m[col++] = cptr.y; m[col++] = cptr.z; m[col] = cptr.w; } inline void MatrixF::setRow(S32 col, const Point3F &cptr) { col *= 4; m[col++] = cptr.x; m[col++] = cptr.y; m[col] = cptr.z; } // not too speedy, but convienient inline Point3F MatrixF::getPosition() const { Point3F pos; getColumn( 3, &pos ); return pos; } #endif //_MMATRIX_H_