tge/engine/game/aiWheeledVehicle.cc
2025-02-17 23:17:30 -06:00

344 lines
8.8 KiB
C++
Executable File

//-----------------------------------------------------------------------------
// Torque Game Engine
// Copyright (C) GarageGames.com, Inc.
//-----------------------------------------------------------------------------
#include "math/mMatrix.h"
#include "math/mPoint.h"
#include "core/realComp.h"
#include "game/aiWheeledVehicle.h"
IMPLEMENT_CO_NETOBJECT_V1(AIWheeledVehicle);
EulerF extractEuler(const MatrixF & matrix)
{
const F32 * mat = (const F32*)matrix;
EulerF r;
r.x = mAsin(mat[MatrixF::idx(2,1)]);
if(mCos(r.x) != 0.f)
{
r.y = mAtan(-mat[MatrixF::idx(2,0)], mat[MatrixF::idx(2,2)]);
r.z = mAtan(-mat[MatrixF::idx(0,1)], mat[MatrixF::idx(1,1)]);
}
else
{
r.y = 0.f;
r.z = mAtan(mat[MatrixF::idx(1,0)], mat[MatrixF::idx(0,0)]);
}
return(r);
}
AIWheeledVehicle::AIWheeledVehicle() :
WheeledVehicle()
{
mMoveDestination.set( 0.0f, 0.0f, 0.0f );
mMoveSpeed = 1.0f;
mMoveTolerance = 0.25f;
mMoveSlowdown = true;
}
/**
* Sets the speed at which this AI moves
*
* @param speed Speed to move, default player was 10
*/
void AIWheeledVehicle::setMoveSpeed( F32 speed )
{
mMoveSpeed = getMax(0.0f, getMin( 1.0f, speed ));
}
/**
* Stops movement for this AI
*/
void AIWheeledVehicle::stopMove()
{
mMoveState = ModeStop;
}
/**
* Sets how far away from the move location is considered
* "on target"
*
* @param tolerance Movement tolerance for error
*/
void AIWheeledVehicle::setMoveTolerance( const F32 tolerance )
{
mMoveTolerance = getMax( 0.1f, tolerance );
}
/**
* Sets the location for the bot to run to
*
* @param location Point to run to
*/
void AIWheeledVehicle::setMoveDestination( const Point3F &location, bool slowdown )
{
mMoveDestination = location;
mMoveState = ModeMove;
mMoveSlowdown = slowdown;
}
// Build a Triangle .. calculate angle of rotation required to meet target..
// man there has to be a better way! >:)
F32 AIWheeledVehicle::getSteeringAngle()
{
// What is our target
Point3F desired;
desired=mMoveDestination;
MatrixF mat = getTransform();
Point3F center, front;
Point3F wFront;
Box3F box = getObjBox();
box.getCenter(&center);
front=center;
front.y=box.max.y; // should be true for all these objects
getWorldBox().getCenter(&center);
front=center+front;
Point3F objFront=front;
Point3F offset = front - center;
EulerF rot;
rot=extractEuler(mat);
MatrixF transform(rot);
transform.mulV(offset, &wFront);
front = wFront + center;
Point3F ftoc;
ftoc.x=mFabs(front.x-center.x);
ftoc.y=mFabs(front.y-center.y);
ftoc.z=mFabs(front.z-center.z);
F32 fToc=mSqrt((ftoc.x*ftoc.x)+(ftoc.y*ftoc.y));
Point3F ltoc;
ltoc.x=mFabs(desired.x-center.x);
ltoc.y=mFabs(desired.y-center.y);
ltoc.z=mFabs(desired.z-center.z);
F32 lToc=mSqrt((ltoc.x*ltoc.x)+(ltoc.y*ltoc.y));
Point3F ftol;
ftol.x=mFabs(front.x-desired.x);
ftol.y=mFabs(front.y-desired.y);
ftol.z=mFabs(front.z-desired.z);
F32 fTol=mSqrt((ftol.x*ftol.x)+(ftol.y*ftol.y));
F32 myAngle = mAcos(((lToc*lToc) + (fToc * fToc) - (fTol*fTol))/(2*lToc*fToc));
Point3F location = getPosition();
F32 xDiff = desired.x - location.x;
F32 yDiff = desired.y - location.y;
F32 finalYaw=mRadToDeg(myAngle);
F32 maxSteeringAngle=0;
VehicleData *vd= (VehicleData*) getDataBlock();
maxSteeringAngle=vd->maxSteeringAngle;
// if(finalYaw > 150)
// steerState = TurnAround;
if(finalYaw < 5 && mLastSteered != 0)
steerState = Straight;
else if(finalYaw < 5)
steerState = SteerNull;
else
{// Quickly Hack out left or right turn info
Point3F rotData=objFront-desired;
MatrixF leftM(-rot);
Point3F leftP;
leftM.mulV(rotData, &leftP);
leftP = leftP + desired;
if(leftP.x<desired.x)
steerState=Right;
else
steerState=Left;
}
Point2F steering = mSteering;
F32 steer=0;
switch(steerState)
{
case SteerNull:
break;
case Left:
steer=myAngle < maxSteeringAngle ? -myAngle-steering.x: -maxSteeringAngle-steering.x;
mLastSteered=steer;
break;
case Right:
steer=myAngle < maxSteeringAngle ? myAngle-steering.x: maxSteeringAngle-steering.x;
mLastSteered=steer;
break;
case Straight:
steer=-steering.x;
mLastSteered=0;
break;
case TurnAround:
steer=maxSteeringAngle-steering.x;
mLastSteered=steer;
break;
};
// Con::printf("AI Steering : %f", steer);
return steer;
}
/**
* This method calculates the moves for the AI player
*
* @param movePtr Pointer to move the move list into
*/
bool AIWheeledVehicle::getAIMove(Move *movePtr)
{
*movePtr = NullMove;
if (!mDisableMove) {
// Use the eye as the current position.
MatrixF eye;
getEyeTransform(&eye);
Point3F location = getPosition();
Point4F rotation;
getTransform().getColumn(1, &rotation);
// Orient towards our destination.
if (mMoveState == ModeMove || mMoveState == ModeReverse) {
movePtr->yaw = getSteeringAngle();
}
// Move towards the destination
if (mMoveState == ModeMove) {
F32 xDiff = mMoveDestination.x - location.x;
F32 yDiff = mMoveDestination.y - location.y;
// Check if we should mMove, or if we are 'close enough'
if (mFabs(xDiff) < mMoveTolerance && mFabs(yDiff) < mMoveTolerance) {
mMoveState = ModeStop;
throwCallback("onReachDestination");
}
else {
// Build move direction in world space
if (isZero(xDiff))
movePtr->y = (location.y > mMoveDestination.y)? -1 : 1;
else
if (isZero(yDiff))
movePtr->x = (location.x > mMoveDestination.x)? -1 : 1;
else
if (mFabs(xDiff) > mFabs(yDiff)) {
F32 value = mFabs(yDiff / xDiff);
movePtr->y = value; // (location.y > mMoveDestination.y)? -value : value;
movePtr->x = (location.x > mMoveDestination.x)? -1 : 1;
}
else {
F32 value = mFabs(xDiff / yDiff);
movePtr->x = (location.x > mMoveDestination.x)? -value : value;
movePtr->y = 1; // (location.y > mMoveDestination.y)? -1 : 1;
}
// Rotate the move into object space (this really only needs
// a 2D matrix)
Point3F newMove;
MatrixF moveMatrix;
moveMatrix.set(EulerF(0, 0, -(rotation.z + movePtr->yaw)));
moveMatrix.mulV( Point3F( movePtr->x, movePtr->y, 0 ), &newMove );
movePtr->x = newMove.x;
movePtr->y = newMove.y;
// Set movement speed. We'll slow down once we get close
// to try and stop on the spot...
if (mMoveSlowdown) {
F32 speed = mMoveSpeed;
F32 dist = mSqrt(xDiff*xDiff + yDiff*yDiff);
F32 maxDist = 5;
if (dist < maxDist)
speed *= dist / maxDist;
movePtr->x *= speed;
movePtr->y *= speed;
}
else {
movePtr->x *= mMoveSpeed;
movePtr->y *= mMoveSpeed;
}
// We should check to see if we are stuck...
if (location == mLastLocation) {
throwCallback("onMoveStuck");
mMoveState = ModeStop;
}
}
}
// Replicate the trigger state into the move so that
// triggers can be controlled from scripts.
for( int i = 0; i < MaxTriggerKeys; i++ )
movePtr->trigger[i] = getImageTriggerState(i);
} else {
mRigid.setAtRest();
}
return true;
}
/**
* Utility function to throw callbacks. Callbacks always occure
* on the datablock class.
*
* @param name Name of script function to call
*/
void AIWheeledVehicle::throwCallback( const char *name )
{
Con::executef(getDataBlock(), 2, name, scriptThis());
}
// --------------------------------------------------------------------------------------------
// Console Functions
// --------------------------------------------------------------------------------------------
ConsoleMethod( AIWheeledVehicle, stop, void, 2, 2, "()"
"Stop moving.")
{
object->stopMove();
}
ConsoleMethod( AIWheeledVehicle, setMoveSpeed, void, 3, 3, "( float speed )"
"Sets the move speed for an AI object.")
{
object->setMoveSpeed( dAtof( argv[2] ) );
}
ConsoleMethod( AIWheeledVehicle, setMoveTolerance, void, 3, 3, "(float speed)" "Sets the movetolerance")
{
object->setMoveTolerance(dAtof(argv[2]));
}
ConsoleMethod( AIWheeledVehicle, setMoveDestination, void, 3, 4, "(Point3F goal, bool slowDown=true)"
"Tells the AI to move to the location provided.")
{
Point3F v( 0.0f, 0.0f, 0.0f );
dSscanf( argv[2], "%f %f %f", &v.x, &v.y, &v.z );
bool slowdown = (argc > 3)? dAtob(argv[3]): true;
object->setMoveDestination( v, slowdown);
}
ConsoleMethod( AIWheeledVehicle, getMoveDestination, const char *, 2, 2, "()"
"Returns the point the AI is set to move to.")
{
Point3F movePoint = object->getMoveDestination();
char *returnBuffer = Con::getReturnBuffer( 256 );
dSprintf( returnBuffer, 256, "%f %f %f", movePoint.x, movePoint.y, movePoint.z );
return returnBuffer;
}