tge/engine/math/mMatrix.h
2025-02-17 23:17:30 -06:00

435 lines
10 KiB
C++
Executable File

//-----------------------------------------------------------------------------
// Torque Game Engine
// Copyright (C) GarageGames.com, Inc.
//-----------------------------------------------------------------------------
#ifndef _MMATRIX_H_
#define _MMATRIX_H_
#ifndef _MMATH_H_
#include "math/mMath.h"
#endif
/// 4x4 Matrix Class
///
/// This runs at F32 precision.
class MatrixF
{
private:
F32 m[16]; ///< Note: this is stored in ROW MAJOR format. OpenGL is
/// COLUMN MAJOR. Transpose before sending down.
public:
/// Create an uninitialized matrix.
///
/// @param identity If true, initialize to the identity matrix.
explicit MatrixF(bool identity=false);
/// Create a matrix to rotate about origin by e.
/// @see set
explicit MatrixF( const EulerF &e);
/// Create a matrix to rotate about p by e.
/// @see set
MatrixF( const EulerF &e, const Point3F& p);
/// Get the index in m to element in column i, row j
///
/// This is necessary as we have m as a one dimensional array.
///
/// @param i Column desired.
/// @param j Row desired.
static U32 idx(U32 i, U32 j) { return (i + j*4); }
/// Initialize matrix to rotate about origin by e.
MatrixF& set( const EulerF &e);
/// Initialize matrix to rotate about p by e.
MatrixF& set( const EulerF &e, const Point3F& p);
/// Initialize matrix with a cross product of p.
MatrixF& setCrossProduct( const Point3F &p);
/// Initialize matrix with a tensor product of p.
MatrixF& setTensorProduct( const Point3F &p, const Point3F& q);
operator F32*() { return (m); } ///< Allow people to get at m.
operator F32*() const { return (F32*)(m); } ///< Allow people to get at m.
bool isAffine() const; ///< Check to see if this is an affine matrix.
bool isIdentity() const; ///< Checks for identity matrix.
/// Make this an identity matrix.
MatrixF& identity();
/// Invert m.
MatrixF& inverse();
/// Take inverse without disturbing position data.
///
/// Ie, take inverse of 3x3 submatrix.
MatrixF& affineInverse();
MatrixF& transpose(); ///< Swap rows and columns.
MatrixF& scale(const Point3F& p); ///< M * Matrix(p) -> M
EulerF toEuler() const;
/// Compute the inverse of the matrix.
///
/// Computes inverse of full 4x4 matrix. Returns false and performs no inverse if
/// the determinant is 0.
///
/// Note: In most cases you want to use the normal inverse function. This method should
/// be used if the matrix has something other than (0,0,0,1) in the bottom row.
bool fullInverse();
/// Swaps rows and columns into matrix.
void transposeTo(F32 *matrix) const;
/// Normalize the matrix.
void normalize();
/// Copy the requested column into a Point4F.
void getColumn(S32 col, Point4F *cptr) const;
/// Copy the requested column into a Point3F.
///
/// This drops the bottom-most row.
void getColumn(S32 col, Point3F *cptr) const;
/// Set the specified column from a Point4F.
void setColumn(S32 col, const Point4F& cptr);
/// Set the specified column from a Point3F.
///
/// The bottom-most row is not set.
void setColumn(S32 col, const Point3F& cptr);
/// Copy the specified row into a Point4F.
void getRow(S32 row, Point4F *cptr) const;
/// Copy the specified row into a Point3F.
///
/// Right-most item is dropped.
void getRow(S32 row, Point3F *cptr) const;
/// Set the specified row from a Point4F.
void setRow(S32 row, const Point4F& cptr);
/// Set the specified row from a Point3F.
///
/// The right-most item is not set.
void setRow(S32 row, const Point3F& cptr);
/// Get the position of the matrix.
///
/// This is the 4th column of the matrix.
Point3F getPosition() const;
/// Set the position of the matrix.
///
/// This is the 4th column of the matrix.
void setPosition( const Point3F &pos ){ setColumn( 3, pos ); }
MatrixF& mul(const MatrixF &a); ///< M * a -> M
MatrixF& mul(const MatrixF &a, const MatrixF &b); ///< a * b -> M
// Scalar multiplies
MatrixF& mul(const F32 a); ///< M * a -> M
MatrixF& mul(const MatrixF &a, const F32 b); ///< a * b -> M
void mul( Point4F& p ) const; ///< M * p -> p (full [4x4] * [1x4])
void mulP( Point3F& p ) const; ///< M * p -> p (assume w = 1.0f)
void mulP( const Point3F &p, Point3F *d) const; ///< M * p -> d (assume w = 1.0f)
void mulV( VectorF& p ) const; ///< M * v -> v (assume w = 0.0f)
void mulV( const VectorF &p, Point3F *d) const; ///< M * v -> d (assume w = 0.0f)
void mul(Box3F& b) const; ///< Axial box -> Axial Box
/// Convenience function to allow people to treat this like an array.
F32& operator ()(S32 row, S32 col) { return m[idx(col,row)]; }
void dumpMatrix(const char *caption=NULL) const;
};
//--------------------------------------
// Inline Functions
inline MatrixF::MatrixF(bool _identity)
{
if (_identity)
identity();
}
inline MatrixF::MatrixF( const EulerF &e )
{
set(e);
}
inline MatrixF::MatrixF( const EulerF &e, const Point3F& p )
{
set(e,p);
}
inline MatrixF& MatrixF::set( const EulerF &e)
{
m_matF_set_euler( e, *this );
return (*this);
}
inline MatrixF& MatrixF::set( const EulerF &e, const Point3F& p)
{
m_matF_set_euler_point( e, p, *this );
return (*this);
}
inline MatrixF& MatrixF::setCrossProduct( const Point3F &p)
{
m[1] = -(m[4] = p.z);
m[8] = -(m[2] = p.y);
m[6] = -(m[9] = p.x);
m[0] = m[3] = m[5] = m[7] = m[10] = m[11] =
m[12] = m[13] = m[14] = 0;
m[15] = 1;
return (*this);
}
inline MatrixF& MatrixF::setTensorProduct( const Point3F &p, const Point3F &q)
{
m[0] = p.x * q.x;
m[1] = p.x * q.y;
m[2] = p.x * q.z;
m[4] = p.y * q.x;
m[5] = p.y * q.y;
m[6] = p.y * q.z;
m[8] = p.z * q.x;
m[9] = p.z * q.y;
m[10] = p.z * q.z;
m[3] = m[7] = m[11] = m[12] = m[13] = m[14] = 0;
m[15] = 1;
return (*this);
}
inline bool MatrixF::isIdentity() const
{
return
m[0] == 1.0f &&
m[1] == 0.0f &&
m[2] == 0.0f &&
m[3] == 0.0f &&
m[4] == 0.0f &&
m[5] == 1.0f &&
m[6] == 0.0f &&
m[7] == 0.0f &&
m[8] == 0.0f &&
m[9] == 0.0f &&
m[10] == 1.0f &&
m[11] == 0.0f &&
m[12] == 0.0f &&
m[13] == 0.0f &&
m[14] == 0.0f &&
m[15] == 1.0f;
}
inline MatrixF& MatrixF::identity()
{
m[0] = 1.0f;
m[1] = 0.0f;
m[2] = 0.0f;
m[3] = 0.0f;
m[4] = 0.0f;
m[5] = 1.0f;
m[6] = 0.0f;
m[7] = 0.0f;
m[8] = 0.0f;
m[9] = 0.0f;
m[10] = 1.0f;
m[11] = 0.0f;
m[12] = 0.0f;
m[13] = 0.0f;
m[14] = 0.0f;
m[15] = 1.0f;
return (*this);
}
inline MatrixF& MatrixF::inverse()
{
m_matF_inverse(m);
return (*this);
}
inline MatrixF& MatrixF::affineInverse()
{
// AssertFatal(isAffine() == true, "Error, this matrix is not an affine transform");
m_matF_affineInverse(m);
return (*this);
}
inline MatrixF& MatrixF::transpose()
{
m_matF_transpose(m);
return (*this);
}
inline MatrixF& MatrixF::scale(const Point3F& p)
{
m_matF_scale(m,p);
return *this;
}
inline void MatrixF::normalize()
{
m_matF_normalize(m);
}
inline MatrixF& MatrixF::mul( const MatrixF &a )
{ // M * a -> M
MatrixF tempThis(*this);
m_matF_x_matF(tempThis, a, *this);
return (*this);
}
inline MatrixF& MatrixF::mul( const MatrixF &a, const MatrixF &b )
{ // a * b -> M
m_matF_x_matF(a, b, *this);
return (*this);
}
inline MatrixF& MatrixF::mul(const F32 a)
{
for (U32 i = 0; i < 16; i++)
m[i] *= a;
return *this;
}
inline MatrixF& MatrixF::mul(const MatrixF &a, const F32 b)
{
*this = a;
mul(b);
return *this;
}
inline void MatrixF::mul( Point4F& p ) const
{
Point4F temp;
m_matF_x_point4F(*this, &p.x, &temp.x);
p = temp;
}
inline void MatrixF::mulP( Point3F& p) const
{
// M * p -> d
Point3F d;
m_matF_x_point3F(*this, &p.x, &d.x);
p = d;
}
inline void MatrixF::mulP( const Point3F &p, Point3F *d) const
{
// M * p -> d
m_matF_x_point3F(*this, &p.x, &d->x);
}
inline void MatrixF::mulV( VectorF& v) const
{
// M * v -> v
VectorF temp;
m_matF_x_vectorF(*this, &v.x, &temp.x);
v = temp;
}
inline void MatrixF::mulV( const VectorF &v, Point3F *d) const
{
// M * v -> d
m_matF_x_vectorF(*this, &v.x, &d->x);
}
inline void MatrixF::mul(Box3F& b) const
{
m_matF_x_box3F(*this, &b.min.x, &b.max.x);
}
inline void MatrixF::getColumn(S32 col, Point4F *cptr) const
{
cptr->x = m[col];
cptr->y = m[col+4];
cptr->z = m[col+8];
cptr->w = m[col+12];
}
inline void MatrixF::getColumn(S32 col, Point3F *cptr) const
{
cptr->x = m[col];
cptr->y = m[col+4];
cptr->z = m[col+8];
}
inline void MatrixF::setColumn(S32 col, const Point4F &cptr)
{
m[col] = cptr.x;
m[col+4] = cptr.y;
m[col+8] = cptr.z;
m[col+12]= cptr.w;
}
inline void MatrixF::setColumn(S32 col, const Point3F &cptr)
{
m[col] = cptr.x;
m[col+4] = cptr.y;
m[col+8] = cptr.z;
}
inline void MatrixF::getRow(S32 col, Point4F *cptr) const
{
col *= 4;
cptr->x = m[col++];
cptr->y = m[col++];
cptr->z = m[col++];
cptr->w = m[col];
}
inline void MatrixF::getRow(S32 col, Point3F *cptr) const
{
col *= 4;
cptr->x = m[col++];
cptr->y = m[col++];
cptr->z = m[col];
}
inline void MatrixF::setRow(S32 col, const Point4F &cptr)
{
col *= 4;
m[col++] = cptr.x;
m[col++] = cptr.y;
m[col++] = cptr.z;
m[col] = cptr.w;
}
inline void MatrixF::setRow(S32 col, const Point3F &cptr)
{
col *= 4;
m[col++] = cptr.x;
m[col++] = cptr.y;
m[col] = cptr.z;
}
// not too speedy, but convienient
inline Point3F MatrixF::getPosition() const
{
Point3F pos;
getColumn( 3, &pos );
return pos;
}
#endif //_MMATRIX_H_