tge/engine/game/tsStatic.cc
2017-04-17 06:17:10 -06:00

673 lines
20 KiB
C++
Executable File

//-----------------------------------------------------------------------------
// Torque Game Engine
// Copyright (C) GarageGames.com, Inc.
//-----------------------------------------------------------------------------
#include "game/tsStatic.h"
#include "core/bitStream.h"
#include "dgl/dgl.h"
#include "sceneGraph/sceneState.h"
#include "sceneGraph/sceneGraph.h"
#include "math/mathIO.h"
#include "ts/tsShapeInstance.h"
#include "console/consoleTypes.h"
#include "game/shapeBase.h"
#include "game/shadow.h"
#include "sceneGraph/detailManager.h"
#include "sim/netConnection.h"
#include "lightingSystem/sgLighting.h"
#include "platform/profiler.h"
IMPLEMENT_CO_NETOBJECT_V1(TSStatic);
//--------------------------------------------------------------------------
//--------------------------------------------------------------------------
TSStatic::TSStatic()
{
overrideOptions = false;
mNetFlags.set(Ghostable | ScopeAlways);
mTypeMask |= StaticObjectType | StaticTSObjectType | StaticRenderedObjectType;
mShapeName = "";
mShapeInstance = NULL;
mShadow = NULL;
mTypeMask |= ShadowCasterObjectType;
mConvexList = new Convex;
}
TSStatic::~TSStatic()
{
delete mConvexList;
mConvexList = NULL;
delete mShadow;
}
//--------------------------------------------------------------------------
void TSStatic::initPersistFields()
{
Parent::initPersistFields();
addGroup("Media");
addField("shapeName", TypeFilename, Offset(mShapeName, TSStatic));
endGroup("Media");
addGroup("Lighting");
addField("receiveSunLight", TypeBool, Offset(receiveSunLight, SceneObject));
addField("receiveLMLighting", TypeBool, Offset(receiveLMLighting, SceneObject));
addField("useAdaptiveSelfIllumination", TypeBool, Offset(useAdaptiveSelfIllumination, SceneObject));
addField("useCustomAmbientLighting", TypeBool, Offset(useCustomAmbientLighting, SceneObject));
addField("customAmbientSelfIllumination", TypeBool, Offset(customAmbientForSelfIllumination, SceneObject));
addField("customAmbientLighting", TypeColorF, Offset(customAmbientLighting, SceneObject));
addField("lightGroupName", TypeString, Offset(lightGroupName, SceneObject));
addField("useLightingOcclusion", TypeBool, Offset(useLightingOcclusion, SceneObject));
endGroup("Lighting");
}
//--------------------------------------------------------------------------
bool TSStatic::onAdd()
{
if(!Parent::onAdd())
return false;
if (!mShapeName || mShapeName[0] == '\0') {
Con::errorf("TSStatic::onAdd: no shape name!");
return false;
}
mShapeHash = _StringTable::hashString(mShapeName);
mShape = ResourceManager->load(mShapeName);
if (bool(mShape) == false)
{
Con::errorf("TSStatic::onAdd: unable to load shape: %s", mShapeName);
return false;
}
if(isClientObject() && !mShape->preloadMaterialList() && NetConnection::filesWereDownloaded())
return false;
mObjBox = mShape->bounds;
resetWorldBox();
setRenderTransform(mObjToWorld);
mShapeInstance = new TSShapeInstance(mShape, isClientObject());
// Scan out the collision hulls...
U32 i;
for (i = 0; i < mShape->details.size(); i++)
{
char* name = (char*)mShape->names[mShape->details[i].nameIndex];
if (dStrstr((const char*)dStrlwr(name), "collision-"))
{
mCollisionDetails.push_back(i);
// The way LOS works is that it will check to see if there is a LOS detail that matches
// the the collision detail + 1 + MaxCollisionShapes (this variable name should change in
// the future). If it can't find a matching LOS it will simply use the collision instead.
// We check for any "unmatched" LOS's further down
mLOSDetails.increment();
char buff[128];
dSprintf(buff, sizeof(buff), "LOS-%d", i + 1 + MaxCollisionShapes);
U32 los = mShape->findDetail(buff);
if (los == -1)
mLOSDetails.last() = i;
else
mLOSDetails.last() = los;
}
}
// Snag any "unmatched" LOS details
for (i = 0; i < mShape->details.size(); i++)
{
char* name = (char*)mShape->names[mShape->details[i].nameIndex];
if (dStrstr((const char*)dStrlwr(name), "los-"))
{
// See if we already have this LOS
bool found = false;
for (U32 j = 0; j < mLOSDetails.size(); j++)
{
if (mLOSDetails[j] == i)
{
found = true;
break;
}
}
if (!found)
mLOSDetails.push_back(i);
}
}
// Compute the hull accelerators (actually, just force the shape to compute them)
for (i = 0; i < mCollisionDetails.size(); i++)
mShapeInstance->getShape()->getAccelerator(mCollisionDetails[i]);
addToScene();
return true;
}
void TSStatic::onRemove()
{
mConvexList->nukeList();
removeFromScene();
delete mShapeInstance;
mShapeInstance = NULL;
delete mShadow;
mShadow = NULL;
Parent::onRemove();
}
void TSStatic::inspectPostApply()
{
if(isServerObject()) {
setMaskBits(0xffffffff);
}
}
//--------------------------------------------------------------------------
bool TSStatic::prepRenderImage(SceneState* state, const U32 stateKey,
const U32 /*startZone*/, const bool /*modifyBaseState*/)
{
if (isLastState(state, stateKey))
return false;
setLastState(state, stateKey);
// This should be sufficient for most objects that don't manage zones, and
// don't need to return a specialized RenderImage...
if (mShapeInstance && state->isObjectRendered(this)) {
Point3F cameraOffset;
getRenderTransform().getColumn(3,&cameraOffset);
cameraOffset -= state->getCameraPosition();
F32 dist = cameraOffset.len();
if (dist < 0.01)
dist = 0.01;
F32 fogAmount = state->getHazeAndFog(dist,cameraOffset.z);
if (fogAmount>0.99f)
return false;
F32 invScale = (1.0f/getMax(getMax(mObjScale.x,mObjScale.y),mObjScale.z));
DetailManager::selectPotentialDetails(mShapeInstance,dist,invScale);
if (mShapeInstance->getCurrentDetail()<0)
return false;
if (mShapeInstance->hasSolid())
{
SceneRenderImage* image = new SceneRenderImage;
image->obj = this;
image->isTranslucent = false;
image->textureSortKey = mShapeHash;
state->insertRenderImage(image);
}
if (mShapeInstance->hasTranslucency())
{
SceneRenderImage* image = new SceneRenderImage;
image->obj = this;
image->isTranslucent = true;
image->sortType = SceneRenderImage::Point;
image->textureSortKey = mShapeHash;
state->setImageRefPoint(this, image);
state->insertRenderImage(image);
}
}
return false;
}
void TSStatic::setTransform(const MatrixF & mat)
{
Parent::setTransform(mat);
// Since the interior is a static object, it's render transform changes 1 to 1
// with it's collision transform
setRenderTransform(mat);
}
void TSStatic::renderObject(SceneState* state, SceneRenderImage* image)
{
AssertFatal(dglIsInCanonicalState(), "Error, GL not in canonical state on entry");
if (!DetailManager::selectCurrentDetail(mShapeInstance))
// we were detailed out
return;
PROFILE_START(TSStatic_renderObject);
RectI viewport;
glMatrixMode(GL_PROJECTION);
glPushMatrix();
dglGetViewport(&viewport);
gClientSceneGraph->getLightManager()->sgSetupLights(this);
// Uncomment this if this is a "simple" (non-zone managing) object
state->setupObjectProjection(this);
// This is something of a hack, but since the 3space objects don't have a
// clear conception of texels/meter like the interiors do, we're sorta
// stuck. I can't even claim this is anything more scientific than eyeball
// work. DMM
F32 axis = (getObjBox().len_x() + getObjBox().len_y() + getObjBox().len_z()) / 3.0;
F32 dist = (getRenderWorldBox().getClosestPoint(state->getCameraPosition()) - state->getCameraPosition()).len();
if (dist != 0)
{
F32 projected = dglProjectRadius(dist, axis) / 25;
if (projected < (1.0 / 16.0))
{
TextureManager::setSmallTexturesActive(true);
}
}
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
dglMultMatrix(&mObjToWorld);
glScalef(mObjScale.x, mObjScale.y, mObjScale.z);
// RENDER CODE HERE
mShapeInstance->setEnvironmentMap(state->getEnvironmentMap());
mShapeInstance->setEnvironmentMapOn(true,1);
mShapeInstance->setAlphaAlways(1.0);
Point3F cameraOffset;
mObjToWorld.getColumn(3,&cameraOffset);
cameraOffset -= state->getCameraPosition();
dist = cameraOffset.len();
F32 fogAmount = state->getHazeAndFog(dist,cameraOffset.z);
if (image->isTranslucent == true)
{
TSShapeInstance::smNoRenderNonTranslucent = true;
TSShapeInstance::smNoRenderTranslucent = false;
}
else
{
TSShapeInstance::smNoRenderNonTranslucent = false;
TSShapeInstance::smNoRenderTranslucent = true;
}
mShapeInstance->setupFog(fogAmount,state->getFogColor());
mShapeInstance->animate();
mShapeInstance->render();
TSShapeInstance::smNoRenderNonTranslucent = false;
TSShapeInstance::smNoRenderTranslucent = false;
TextureManager::setSmallTexturesActive(false);
glMatrixMode(GL_MODELVIEW);
glPopMatrix();
gClientSceneGraph->getLightManager()->sgResetLights();
dglSetCanonicalState();
if (GameBase::gShowBoundingBox) {
glDisable(GL_DEPTH_TEST);
Point3F box;
glPushMatrix();
dglMultMatrix(&getTransform());
box = (mObjBox.min + mObjBox.max) * 0.5;
glTranslatef(box.x,box.y,box.z);
box = (mObjBox.max - mObjBox.min) * 0.5;
glScalef(box.x,box.y,box.z);
glColor3f(1, 0, 1);
ShapeBase::wireCube(Point3F(1,1,1),Point3F(0,0,0));
glPopMatrix();
glPushMatrix();
box = (mWorldBox.min + mWorldBox.max) * 0.5;
glTranslatef(box.x,box.y,box.z);
box = (mWorldBox.max - mWorldBox.min) * 0.5;
glScalef(box.x,box.y,box.z);
glColor3f(0, 1, 1);
ShapeBase::wireCube(Point3F(1,1,1),Point3F(0,0,0));
glPopMatrix();
glEnable(GL_DEPTH_TEST);
}
glMatrixMode(GL_PROJECTION);
glPopMatrix();
glMatrixMode(GL_MODELVIEW);
dglSetViewport(viewport);
AssertFatal(dglIsInCanonicalState(), "Error, GL not in canonical state on exit");
PROFILE_END();
}
U32 TSStatic::packUpdate(NetConnection *con, U32 mask, BitStream *stream)
{
U32 retMask = Parent::packUpdate(con, mask, stream);
mathWrite(*stream, getTransform());
mathWrite(*stream, getScale());
stream->writeString(mShapeName);
if(stream->writeFlag(mask & advancedStaticOptionsMask))
{
stream->writeFlag(receiveSunLight);
stream->writeFlag(useAdaptiveSelfIllumination);
stream->writeFlag(useCustomAmbientLighting);
stream->writeFlag(customAmbientForSelfIllumination);
stream->write(customAmbientLighting);
stream->writeFlag(receiveLMLighting);
stream->writeFlag(useLightingOcclusion);
if(isServerObject())
{
lightIds.clear();
findLightGroup(con);
U32 maxcount = getMin(lightIds.size(), SG_TSSTATIC_MAX_LIGHTS);
stream->writeInt(maxcount, SG_TSSTATIC_MAX_LIGHT_SHIFT);
for(U32 i=0; i<maxcount; i++)
{
stream->writeInt(lightIds[i], NetConnection::GhostIdBitSize);
}
}
else
{
// recording demo...
U32 maxcount = getMin(lightIds.size(), SG_TSSTATIC_MAX_LIGHTS);
stream->writeInt(maxcount, SG_TSSTATIC_MAX_LIGHT_SHIFT);
for(U32 i=0; i<maxcount; i++)
{
stream->writeInt(lightIds[i], NetConnection::GhostIdBitSize);
}
}
}
return retMask;
}
void TSStatic::unpackUpdate(NetConnection *con, BitStream *stream)
{
Parent::unpackUpdate(con, stream);
MatrixF mat;
Point3F scale;
mathRead(*stream, &mat);
mathRead(*stream, &scale);
setScale(scale);
setTransform(mat);
mShapeName = stream->readSTString();
if(stream->readFlag())
{
receiveSunLight = stream->readFlag();
useAdaptiveSelfIllumination = stream->readFlag();
useCustomAmbientLighting = stream->readFlag();
customAmbientForSelfIllumination = stream->readFlag();
stream->read(&customAmbientLighting);
receiveLMLighting = stream->readFlag();
useLightingOcclusion = stream->readFlag();
U32 count = stream->readInt(SG_TSSTATIC_MAX_LIGHT_SHIFT);
lightIds.clear();
for(U32 i=0; i<count; i++)
{
S32 id = stream->readInt(NetConnection::GhostIdBitSize);
lightIds.push_back(id);
}
}
}
//--------------------------------------------------------------------------
//----------------------------------------------------------------------------
bool TSStatic::castRay(const Point3F &start, const Point3F &end, RayInfo* info)
{
if (mShapeInstance)
{
RayInfo shortest;
shortest.t = 1e8;
info->object = NULL;
for (U32 i = 0; i < mLOSDetails.size(); i++)
{
mShapeInstance->animate(mLOSDetails[i]);
if (mShapeInstance->castRay(start, end, info, mLOSDetails[i]))
{
info->object = this;
if (info->t < shortest.t)
shortest = *info;
}
}
if (info->object == this) {
// Copy out the shortest time...
*info = shortest;
return true;
}
}
return false;
}
//----------------------------------------------------------------------------
bool TSStatic::buildPolyList(AbstractPolyList* polyList, const Box3F &, const SphereF &)
{
if (mShapeInstance) {
bool ret = false;
polyList->setTransform(&mObjToWorld, mObjScale);
polyList->setObject(this);
for (U32 i = 0; i < mCollisionDetails.size(); i++)
{
mShapeInstance->buildPolyList(polyList, mCollisionDetails[i]);
ret = true;
}
return ret;
}
return false;
}
void TSStatic::buildConvex(const Box3F& box, Convex* convex)
{
if (mShapeInstance == NULL)
return;
// These should really come out of a pool
mConvexList->collectGarbage();
Box3F realBox = box;
mWorldToObj.mul(realBox);
realBox.min.convolveInverse(mObjScale);
realBox.max.convolveInverse(mObjScale);
if (realBox.isOverlapped(getObjBox()) == false)
return;
for (U32 i = 0; i < mCollisionDetails.size(); i++)
{
// If there is no convex "accelerator" for this detail,
// there's nothing to collide with.
TSShape::ConvexHullAccelerator* pAccel =
mShapeInstance->getShape()->getAccelerator(mCollisionDetails[i]);
if (!pAccel || !pAccel->numVerts)
continue;
// See if this hull exists in the working set already...
Convex* cc = 0;
CollisionWorkingList& wl = convex->getWorkingList();
for (CollisionWorkingList* itr = wl.wLink.mNext; itr != &wl; itr = itr->wLink.mNext) {
if (itr->mConvex->getType() == TSStaticConvexType &&
(static_cast<TSStaticConvex*>(itr->mConvex)->pStatic == this &&
static_cast<TSStaticConvex*>(itr->mConvex)->hullId == i)) {
cc = itr->mConvex;
break;
}
}
if (cc)
continue;
// Create a new convex.
TSStaticConvex* cp = new TSStaticConvex;
mConvexList->registerObject(cp);
convex->addToWorkingList(cp);
cp->mObject = this;
cp->pStatic = this;
cp->hullId = i;
cp->box = mObjBox;
cp->findNodeTransform();
}
}
//--------------------------------------------------------------------------
//--------------------------------------------------------------------------
void TSStaticConvex::findNodeTransform()
{
S32 dl = pStatic->mCollisionDetails[hullId];
TSShapeInstance* si = pStatic->mShapeInstance;
TSShape* shape = si->getShape();
const TSShape::Detail* detail = &shape->details[dl];
S32 subs = detail->subShapeNum;
S32 start = shape->subShapeFirstObject[subs];
S32 end = start + shape->subShapeNumObjects[subs];
// Find the first object that contains a mesh for this
// detail level. There should only be one mesh per
// collision detail level.
for (S32 i = start; i < end; i++) {
const TSShape::Object* obj = &shape->objects[i];
if (obj->numMeshes && detail->objectDetailNum < obj->numMeshes) {
nodeTransform = &si->mNodeTransforms[obj->nodeIndex];
return;
}
}
return;
}
const MatrixF& TSStaticConvex::getTransform() const
{
// Multiply on the mesh shape offset
// tg: Returning this static here is not really a good idea, but
// all this Convex code needs to be re-organized.
if (nodeTransform) {
static MatrixF mat;
mat.mul(mObject->getTransform(),*nodeTransform);
return mat;
}
return mObject->getTransform();
}
Box3F TSStaticConvex::getBoundingBox() const
{
return getBoundingBox(mObject->getTransform(), mObject->getScale());
}
Box3F TSStaticConvex::getBoundingBox(const MatrixF& mat, const Point3F& scale) const
{
Box3F newBox = box;
newBox.min.convolve(scale);
newBox.max.convolve(scale);
mat.mul(newBox);
return newBox;
}
Point3F TSStaticConvex::support(const VectorF& v) const
{
TSShape::ConvexHullAccelerator* pAccel =
pStatic->mShapeInstance->getShape()->getAccelerator(pStatic->mCollisionDetails[hullId]);
AssertFatal(pAccel != NULL, "Error, no accel!");
F32 currMaxDP = mDot(pAccel->vertexList[0], v);
U32 index = 0;
for (U32 i = 1; i < pAccel->numVerts; i++) {
F32 dp = mDot(pAccel->vertexList[i], v);
if (dp > currMaxDP) {
currMaxDP = dp;
index = i;
}
}
return pAccel->vertexList[index];
}
void TSStaticConvex::getFeatures(const MatrixF& mat, const VectorF& n, ConvexFeature* cf)
{
cf->material = 0;
cf->object = mObject;
TSShape::ConvexHullAccelerator* pAccel =
pStatic->mShapeInstance->getShape()->getAccelerator(pStatic->mCollisionDetails[hullId]);
AssertFatal(pAccel != NULL, "Error, no accel!");
F32 currMaxDP = mDot(pAccel->vertexList[0], n);
U32 index = 0;
U32 i;
for (i = 1; i < pAccel->numVerts; i++) {
F32 dp = mDot(pAccel->vertexList[i], n);
if (dp > currMaxDP) {
currMaxDP = dp;
index = i;
}
}
const U8* emitString = pAccel->emitStrings[index];
U32 currPos = 0;
U32 numVerts = emitString[currPos++];
for (i = 0; i < numVerts; i++) {
cf->mVertexList.increment();
U32 index = emitString[currPos++];
mat.mulP(pAccel->vertexList[index], &cf->mVertexList.last());
}
U32 numEdges = emitString[currPos++];
for (i = 0; i < numEdges; i++) {
U32 ev0 = emitString[currPos++];
U32 ev1 = emitString[currPos++];
cf->mEdgeList.increment();
cf->mEdgeList.last().vertex[0] = ev0;
cf->mEdgeList.last().vertex[1] = ev1;
}
U32 numFaces = emitString[currPos++];
for (i = 0; i < numFaces; i++) {
cf->mFaceList.increment();
U32 plane = emitString[currPos++];
mat.mulV(pAccel->normalList[plane], &cf->mFaceList.last().normal);
for (U32 j = 0; j < 3; j++)
cf->mFaceList.last().vertex[j] = emitString[currPos++];
}
}
void TSStaticConvex::getPolyList(AbstractPolyList* list)
{
list->setTransform(&pStatic->getTransform(), pStatic->getScale());
list->setObject(pStatic);
pStatic->mShapeInstance->animate(pStatic->mCollisionDetails[hullId]);
pStatic->mShapeInstance->buildPolyList(list, pStatic->mCollisionDetails[hullId]);
}