439 lines
10 KiB
C++
Executable File
439 lines
10 KiB
C++
Executable File
//-----------------------------------------------------------------------------
|
|
// Torque Game Engine
|
|
// Copyright (C) GarageGames.com, Inc.
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#ifndef _MMATRIX_H_
|
|
#define _MMATRIX_H_
|
|
|
|
|
|
#ifndef _MMATH_H_
|
|
#include "math/mMath.h"
|
|
#endif
|
|
|
|
/// 4x4 Matrix Class
|
|
///
|
|
/// This runs at F32 precision.
|
|
class MatrixF
|
|
{
|
|
private:
|
|
F32 m[16]; ///< Note: this is stored in ROW MAJOR format. OpenGL is
|
|
/// COLUMN MAJOR. Transpose before sending down.
|
|
|
|
public:
|
|
/// Create an uninitialized matrix.
|
|
///
|
|
/// @param identity If true, initialize to the identity matrix.
|
|
explicit MatrixF(bool identity=false);
|
|
|
|
/// Create a matrix to rotate about origin by e.
|
|
/// @see set
|
|
explicit MatrixF( const EulerF &e);
|
|
|
|
/// Create a matrix to rotate about p by e.
|
|
/// @see set
|
|
MatrixF( const EulerF &e, const Point3F& p);
|
|
|
|
/// Get the index in m to element in column i, row j
|
|
///
|
|
/// This is necessary as we have m as a one dimensional array.
|
|
///
|
|
/// @param i Column desired.
|
|
/// @param j Row desired.
|
|
static U32 idx(U32 i, U32 j) { return (i + j*4); }
|
|
|
|
/// Initialize matrix to rotate about origin by e.
|
|
MatrixF& set( const EulerF &e);
|
|
|
|
/// Initialize matrix to rotate about p by e.
|
|
MatrixF& set( const EulerF &e, const Point3F& p);
|
|
|
|
/// Initialize matrix with a cross product of p.
|
|
MatrixF& setCrossProduct( const Point3F &p);
|
|
|
|
/// Initialize matrix with a tensor product of p.
|
|
MatrixF& setTensorProduct( const Point3F &p, const Point3F& q);
|
|
|
|
operator F32*() { return (m); } ///< Allow people to get at m.
|
|
operator F32*() const { return (F32*)(m); } ///< Allow people to get at m.
|
|
|
|
bool isAffine() const; ///< Check to see if this is an affine matrix.
|
|
bool isIdentity() const; ///< Checks for identity matrix.
|
|
|
|
/// Make this an identity matrix.
|
|
MatrixF& identity();
|
|
|
|
/// Invert m.
|
|
MatrixF& inverse();
|
|
|
|
/// Take inverse without disturbing position data.
|
|
///
|
|
/// Ie, take inverse of 3x3 submatrix.
|
|
MatrixF& affineInverse();
|
|
MatrixF& transpose(); ///< Swap rows and columns.
|
|
MatrixF& scale(const Point3F& p); ///< M * Matrix(p) -> M
|
|
|
|
EulerF toEuler() const;
|
|
|
|
/// Compute the inverse of the matrix.
|
|
///
|
|
/// Computes inverse of full 4x4 matrix. Returns false and performs no inverse if
|
|
/// the determinant is 0.
|
|
///
|
|
/// Note: In most cases you want to use the normal inverse function. This method should
|
|
/// be used if the matrix has something other than (0,0,0,1) in the bottom row.
|
|
bool fullInverse();
|
|
|
|
/// Swaps rows and columns into matrix.
|
|
void transposeTo(F32 *matrix) const;
|
|
|
|
/// Normalize the matrix.
|
|
void normalize();
|
|
|
|
/// Copy the requested column into a Point4F.
|
|
void getColumn(S32 col, Point4F *cptr) const;
|
|
|
|
/// Copy the requested column into a Point3F.
|
|
///
|
|
/// This drops the bottom-most row.
|
|
void getColumn(S32 col, Point3F *cptr) const;
|
|
|
|
/// Set the specified column from a Point4F.
|
|
void setColumn(S32 col, const Point4F& cptr);
|
|
|
|
/// Set the specified column from a Point3F.
|
|
///
|
|
/// The bottom-most row is not set.
|
|
void setColumn(S32 col, const Point3F& cptr);
|
|
|
|
/// Copy the specified row into a Point4F.
|
|
void getRow(S32 row, Point4F *cptr) const;
|
|
|
|
/// Copy the specified row into a Point3F.
|
|
///
|
|
/// Right-most item is dropped.
|
|
void getRow(S32 row, Point3F *cptr) const;
|
|
|
|
/// Set the specified row from a Point4F.
|
|
void setRow(S32 row, const Point4F& cptr);
|
|
|
|
/// Set the specified row from a Point3F.
|
|
///
|
|
/// The right-most item is not set.
|
|
void setRow(S32 row, const Point3F& cptr);
|
|
|
|
/// Get the position of the matrix.
|
|
///
|
|
/// This is the 4th column of the matrix.
|
|
Point3F getPosition() const;
|
|
|
|
/// Set the position of the matrix.
|
|
///
|
|
/// This is the 4th column of the matrix.
|
|
void setPosition( const Point3F &pos ){ setColumn( 3, pos ); }
|
|
|
|
MatrixF& mul(const MatrixF &a); ///< M * a -> M
|
|
MatrixF& mul(const MatrixF &a, const MatrixF &b); ///< a * b -> M
|
|
|
|
// Scalar multiplies
|
|
MatrixF& mul(const F32 a); ///< M * a -> M
|
|
MatrixF& mul(const MatrixF &a, const F32 b); ///< a * b -> M
|
|
|
|
|
|
void mul( Point4F& p ) const; ///< M * p -> p (full [4x4] * [1x4])
|
|
void mulP( Point3F& p ) const; ///< M * p -> p (assume w = 1.0f)
|
|
void mulP( const Point3F &p, Point3F *d) const; ///< M * p -> d (assume w = 1.0f)
|
|
void mulV( VectorF& p ) const; ///< M * v -> v (assume w = 0.0f)
|
|
void mulV( const VectorF &p, Point3F *d) const; ///< M * v -> d (assume w = 0.0f)
|
|
|
|
void mul(Box3F& b) const; ///< Axial box -> Axial Box
|
|
|
|
/// Convenience function to allow people to treat this like an array.
|
|
F32& operator ()(S32 row, S32 col) { return m[idx(col,row)]; }
|
|
|
|
void dumpMatrix(const char *caption=NULL) const;
|
|
}
|
|
#if defined(__VEC__)
|
|
__attribute__ ((aligned (16)))
|
|
#endif
|
|
;
|
|
|
|
//--------------------------------------
|
|
// Inline Functions
|
|
|
|
inline MatrixF::MatrixF(bool _identity)
|
|
{
|
|
if (_identity)
|
|
identity();
|
|
}
|
|
|
|
inline MatrixF::MatrixF( const EulerF &e )
|
|
{
|
|
set(e);
|
|
}
|
|
|
|
inline MatrixF::MatrixF( const EulerF &e, const Point3F& p )
|
|
{
|
|
set(e,p);
|
|
}
|
|
|
|
inline MatrixF& MatrixF::set( const EulerF &e)
|
|
{
|
|
m_matF_set_euler( e, *this );
|
|
return (*this);
|
|
}
|
|
|
|
|
|
inline MatrixF& MatrixF::set( const EulerF &e, const Point3F& p)
|
|
{
|
|
m_matF_set_euler_point( e, p, *this );
|
|
return (*this);
|
|
}
|
|
|
|
inline MatrixF& MatrixF::setCrossProduct( const Point3F &p)
|
|
{
|
|
m[1] = -(m[4] = p.z);
|
|
m[8] = -(m[2] = p.y);
|
|
m[6] = -(m[9] = p.x);
|
|
m[0] = m[3] = m[5] = m[7] = m[10] = m[11] =
|
|
m[12] = m[13] = m[14] = 0.0f;
|
|
m[15] = 1;
|
|
return (*this);
|
|
}
|
|
|
|
inline MatrixF& MatrixF::setTensorProduct( const Point3F &p, const Point3F &q)
|
|
{
|
|
m[0] = p.x * q.x;
|
|
m[1] = p.x * q.y;
|
|
m[2] = p.x * q.z;
|
|
m[4] = p.y * q.x;
|
|
m[5] = p.y * q.y;
|
|
m[6] = p.y * q.z;
|
|
m[8] = p.z * q.x;
|
|
m[9] = p.z * q.y;
|
|
m[10] = p.z * q.z;
|
|
m[3] = m[7] = m[11] = m[12] = m[13] = m[14] = 0.0f;
|
|
m[15] = 1.0f;
|
|
return (*this);
|
|
}
|
|
|
|
inline bool MatrixF::isIdentity() const
|
|
{
|
|
return
|
|
m[0] == 1.0f &&
|
|
m[1] == 0.0f &&
|
|
m[2] == 0.0f &&
|
|
m[3] == 0.0f &&
|
|
m[4] == 0.0f &&
|
|
m[5] == 1.0f &&
|
|
m[6] == 0.0f &&
|
|
m[7] == 0.0f &&
|
|
m[8] == 0.0f &&
|
|
m[9] == 0.0f &&
|
|
m[10] == 1.0f &&
|
|
m[11] == 0.0f &&
|
|
m[12] == 0.0f &&
|
|
m[13] == 0.0f &&
|
|
m[14] == 0.0f &&
|
|
m[15] == 1.0f;
|
|
}
|
|
|
|
inline MatrixF& MatrixF::identity()
|
|
{
|
|
m[0] = 1.0f;
|
|
m[1] = 0.0f;
|
|
m[2] = 0.0f;
|
|
m[3] = 0.0f;
|
|
m[4] = 0.0f;
|
|
m[5] = 1.0f;
|
|
m[6] = 0.0f;
|
|
m[7] = 0.0f;
|
|
m[8] = 0.0f;
|
|
m[9] = 0.0f;
|
|
m[10] = 1.0f;
|
|
m[11] = 0.0f;
|
|
m[12] = 0.0f;
|
|
m[13] = 0.0f;
|
|
m[14] = 0.0f;
|
|
m[15] = 1.0f;
|
|
return (*this);
|
|
}
|
|
|
|
|
|
inline MatrixF& MatrixF::inverse()
|
|
{
|
|
m_matF_inverse(m);
|
|
return (*this);
|
|
}
|
|
|
|
inline MatrixF& MatrixF::affineInverse()
|
|
{
|
|
// AssertFatal(isAffine() == true, "Error, this matrix is not an affine transform");
|
|
m_matF_affineInverse(m);
|
|
return (*this);
|
|
}
|
|
|
|
inline MatrixF& MatrixF::transpose()
|
|
{
|
|
m_matF_transpose(m);
|
|
return (*this);
|
|
}
|
|
|
|
inline MatrixF& MatrixF::scale(const Point3F& p)
|
|
{
|
|
m_matF_scale(m,p);
|
|
return *this;
|
|
}
|
|
|
|
inline void MatrixF::normalize()
|
|
{
|
|
m_matF_normalize(m);
|
|
}
|
|
|
|
inline MatrixF& MatrixF::mul( const MatrixF &a )
|
|
{ // M * a -> M
|
|
MatrixF tempThis(*this);
|
|
m_matF_x_matF(tempThis, a, *this);
|
|
return (*this);
|
|
}
|
|
|
|
|
|
inline MatrixF& MatrixF::mul( const MatrixF &a, const MatrixF &b )
|
|
{ // a * b -> M
|
|
m_matF_x_matF(a, b, *this);
|
|
return (*this);
|
|
}
|
|
|
|
|
|
inline MatrixF& MatrixF::mul(const F32 a)
|
|
{
|
|
for (U32 i = 0; i < 16; i++)
|
|
m[i] *= a;
|
|
|
|
return *this;
|
|
}
|
|
|
|
|
|
inline MatrixF& MatrixF::mul(const MatrixF &a, const F32 b)
|
|
{
|
|
*this = a;
|
|
mul(b);
|
|
|
|
return *this;
|
|
}
|
|
|
|
inline void MatrixF::mul( Point4F& p ) const
|
|
{
|
|
Point4F temp;
|
|
m_matF_x_point4F(*this, &p.x, &temp.x);
|
|
p = temp;
|
|
}
|
|
|
|
inline void MatrixF::mulP( Point3F& p) const
|
|
{
|
|
// M * p -> d
|
|
Point3F d;
|
|
m_matF_x_point3F(*this, &p.x, &d.x);
|
|
p = d;
|
|
}
|
|
|
|
inline void MatrixF::mulP( const Point3F &p, Point3F *d) const
|
|
{
|
|
// M * p -> d
|
|
m_matF_x_point3F(*this, &p.x, &d->x);
|
|
}
|
|
|
|
inline void MatrixF::mulV( VectorF& v) const
|
|
{
|
|
// M * v -> v
|
|
VectorF temp;
|
|
m_matF_x_vectorF(*this, &v.x, &temp.x);
|
|
v = temp;
|
|
}
|
|
|
|
inline void MatrixF::mulV( const VectorF &v, Point3F *d) const
|
|
{
|
|
// M * v -> d
|
|
m_matF_x_vectorF(*this, &v.x, &d->x);
|
|
}
|
|
|
|
inline void MatrixF::mul(Box3F& b) const
|
|
{
|
|
m_matF_x_box3F(*this, &b.min.x, &b.max.x);
|
|
}
|
|
|
|
inline void MatrixF::getColumn(S32 col, Point4F *cptr) const
|
|
{
|
|
cptr->x = m[col];
|
|
cptr->y = m[col+4];
|
|
cptr->z = m[col+8];
|
|
cptr->w = m[col+12];
|
|
}
|
|
|
|
inline void MatrixF::getColumn(S32 col, Point3F *cptr) const
|
|
{
|
|
cptr->x = m[col];
|
|
cptr->y = m[col+4];
|
|
cptr->z = m[col+8];
|
|
}
|
|
|
|
inline void MatrixF::setColumn(S32 col, const Point4F &cptr)
|
|
{
|
|
m[col] = cptr.x;
|
|
m[col+4] = cptr.y;
|
|
m[col+8] = cptr.z;
|
|
m[col+12]= cptr.w;
|
|
}
|
|
|
|
inline void MatrixF::setColumn(S32 col, const Point3F &cptr)
|
|
{
|
|
m[col] = cptr.x;
|
|
m[col+4] = cptr.y;
|
|
m[col+8] = cptr.z;
|
|
}
|
|
|
|
|
|
inline void MatrixF::getRow(S32 col, Point4F *cptr) const
|
|
{
|
|
col *= 4;
|
|
cptr->x = m[col++];
|
|
cptr->y = m[col++];
|
|
cptr->z = m[col++];
|
|
cptr->w = m[col];
|
|
}
|
|
|
|
inline void MatrixF::getRow(S32 col, Point3F *cptr) const
|
|
{
|
|
col *= 4;
|
|
cptr->x = m[col++];
|
|
cptr->y = m[col++];
|
|
cptr->z = m[col];
|
|
}
|
|
|
|
inline void MatrixF::setRow(S32 col, const Point4F &cptr)
|
|
{
|
|
col *= 4;
|
|
m[col++] = cptr.x;
|
|
m[col++] = cptr.y;
|
|
m[col++] = cptr.z;
|
|
m[col] = cptr.w;
|
|
}
|
|
|
|
inline void MatrixF::setRow(S32 col, const Point3F &cptr)
|
|
{
|
|
col *= 4;
|
|
m[col++] = cptr.x;
|
|
m[col++] = cptr.y;
|
|
m[col] = cptr.z;
|
|
}
|
|
|
|
// not too speedy, but convienient
|
|
inline Point3F MatrixF::getPosition() const
|
|
{
|
|
Point3F pos;
|
|
getColumn( 3, &pos );
|
|
return pos;
|
|
}
|
|
|
|
#endif //_MMATRIX_H_
|