tge/engine/sim/sceneObject.cc
2017-04-17 06:17:10 -06:00

2265 lines
72 KiB
C++
Executable File

//-----------------------------------------------------------------------------
// Torque Game Engine
// Copyright (C) GarageGames.com, Inc.
//-----------------------------------------------------------------------------
#include "sim/sceneObject.h"
#include "sceneGraph/sceneGraph.h"
#include "console/consoleTypes.h"
#include "collision/extrudedPolyList.h"
#include "collision/earlyOutPolyList.h"
#include "platform/profiler.h"
#include "platform/profiler.h"
#include "interior/interior.h"
#include "interior/interiorInstance.h"
#include "terrain/terrData.h"
#include "dgl/gBitmap.h"
#include "dgl/dgl.h"
#include "sim/netConnection.h"
#include "lightingSystem/sgLightObject.h"
IMPLEMENT_CONOBJECT(SceneObject);
const U32 Container::csmNumBins = 16;
const F32 Container::csmBinSize = 64;
const F32 Container::csmTotalBinSize = Container::csmBinSize * Container::csmNumBins;
U32 Container::smCurrSeqKey = 1;
const U32 Container::csmRefPoolBlockSize = 4096;
// Statics used by buildPolyList methods
AbstractPolyList* sPolyList;
SphereF sBoundingSphere;
Box3F sBoundingBox;
// Statics used by collide methods
ExtrudedPolyList sExtrudedPolyList;
Polyhedron sBoxPolyhedron;
//--------------------------------------------------------------------------
//-------------------------------------- Console callbacks
//
ConsoleMethod( SceneObject, getTransform, const char*, 2, 2, "Get transform of object.")
{
char *returnBuffer = Con::getReturnBuffer(256);
const MatrixF& mat = object->getTransform();
Point3F pos;
mat.getColumn(3,&pos);
AngAxisF aa(mat);
dSprintf(returnBuffer,256,"%g %g %g %g %g %g %g",
pos.x,pos.y,pos.z,aa.axis.x,aa.axis.y,aa.axis.z,aa.angle);
return returnBuffer;
}
ConsoleMethod( SceneObject, getPosition, const char*, 2, 2, "Get position of object.")
{
char *returnBuffer = Con::getReturnBuffer(256);
const MatrixF& mat = object->getTransform();
Point3F pos;
mat.getColumn(3,&pos);
dSprintf(returnBuffer,256,"%g %g %g",pos.x,pos.y,pos.z);
return returnBuffer;
}
ConsoleMethod( SceneObject, getForwardVector, const char*, 2, 2, "Returns a vector indicating the direction this object is facing.")
{
char *returnBuffer = Con::getReturnBuffer(256);
const MatrixF& mat = object->getTransform();
Point3F dir;
mat.getColumn(1,&dir);
dSprintf(returnBuffer,256,"%g %g %g",dir.x,dir.y,dir.z);
return returnBuffer;
}
ConsoleMethod( SceneObject, setTransform, void, 3, 3, "(Transform T)")
{
Point3F pos;
const MatrixF& tmat = object->getTransform();
tmat.getColumn(3,&pos);
AngAxisF aa(tmat);
dSscanf(argv[2],"%g %g %g %g %g %g %g",
&pos.x,&pos.y,&pos.z,&aa.axis.x,&aa.axis.y,&aa.axis.z,&aa.angle);
MatrixF mat;
aa.setMatrix(&mat);
mat.setColumn(3,pos);
object->setTransform(mat);
}
ConsoleMethod( SceneObject, getScale, const char*, 2, 2, "Get scaling as a Point3F.")
{
char *returnBuffer = Con::getReturnBuffer(256);
const VectorF & scale = object->getScale();
dSprintf(returnBuffer, 256, "%g %g %g",
scale.x, scale.y, scale.z);
return(returnBuffer);
}
ConsoleMethod( SceneObject, setScale, void, 3, 3, "(Point3F scale)")
{
VectorF scale(0.f,0.f,0.f);
dSscanf(argv[2], "%g %g %g", &scale.x, &scale.y, &scale.z);
object->setScale(scale);
}
ConsoleMethod( SceneObject, getWorldBox, const char*, 2, 2, "Returns six fields, two Point3Fs, containing the min and max points of the worldbox.")
{
char *returnBuffer = Con::getReturnBuffer(256);
const Box3F& box = object->getWorldBox();
dSprintf(returnBuffer,256,"%g %g %g %g %g %g",
box.min.x, box.min.y, box.min.z,
box.max.x, box.max.y, box.max.z);
return returnBuffer;
}
ConsoleMethod( SceneObject, getWorldBoxCenter, const char*, 2, 2, "Returns the center of the world bounding box.")
{
char *returnBuffer = Con::getReturnBuffer(256);
const Box3F& box = object->getWorldBox();
Point3F center;
box.getCenter(&center);
dSprintf(returnBuffer,256,"%g %g %g", center.x, center.y, center.z);
return returnBuffer;
}
ConsoleMethod( SceneObject, getObjectBox, const char *, 2, 2, "Returns the bounding box relative to the object's origin.")
{
char *returnBuffer = Con::getReturnBuffer(256);
const Box3F& box = object->getObjBox();
dSprintf(returnBuffer,256,"%g %g %g %g %g %g",
box.min.x, box.min.y, box.min.z,
box.max.x, box.max.y, box.max.z);
return returnBuffer;
}
ConsoleFunctionGroupBegin( Containers, "Functions for ray casting and spatial queries.\n\n"
"@note These only work server-side.");
ConsoleFunction(containerBoxEmpty, bool, 4, 6, "(bitset mask, Point3F center, float xRadius, float yRadius, float zRadius)"
"See if any objects of given types are present in box of given extent.\n\n"
"@note Extent parameter is last since only one radius is often needed. If one radius is provided, "
"the yRadius and zRadius are assumed to be the same.\n"
"@param mask Indicates the type of objects we are checking against.\n"
"@param center Center of box.\n"
"@param xRadius See above.\n"
"@param yRadius See above.\n"
"@param zRadius See above.")
{
Point3F center;
Point3F extent;
U32 mask = dAtoi(argv[1]);
dSscanf(argv[2], "%g %g %g", &center.x, &center.y, &center.z);
extent.x = dAtof(argv[3]);
extent.y = argc > 4 ? dAtof(argv[4]) : extent.x;
extent.z = argc > 5 ? dAtof(argv[5]) : extent.x;
Box3F B(center - extent, center + extent, true);
EarlyOutPolyList polyList;
polyList.mPlaneList.clear();
polyList.mNormal.set(0,0,0);
polyList.mPlaneList.setSize(6);
polyList.mPlaneList[0].set(B.min, VectorF(-1,0,0));
polyList.mPlaneList[1].set(B.max, VectorF(0,1,0));
polyList.mPlaneList[2].set(B.max, VectorF(1,0,0));
polyList.mPlaneList[3].set(B.min, VectorF(0,-1,0));
polyList.mPlaneList[4].set(B.min, VectorF(0,0,-1));
polyList.mPlaneList[5].set(B.max, VectorF(0,0,1));
return ! gServerContainer.buildPolyList(B, mask, &polyList);
}
ConsoleFunction( initContainerRadiusSearch, void, 4, 4, "(Point3F pos, float radius, bitset mask)"
"Start a search for items within radius of pos, filtering by bitset mask.")
{
F32 x, y, z;
dSscanf(argv[1], "%g %g %g", &x, &y, &z);
F32 r = dAtof(argv[2]);
U32 mask = dAtoi(argv[3]);
gServerContainer.initRadiusSearch(Point3F(x, y, z), r, mask);
}
ConsoleFunction( containerSearchNext, S32, 1, 1, "Get next item from a search started with initContainerRadiusSearch.")
{
return gServerContainer.containerSearchNext();
}
ConsoleFunction( containerSearchCurrDist, F32, 1, 1, "Get distance of the center of the current item from the center of the current initContainerRadiusSearch.")
{
return gServerContainer.containerSearchCurrDist();
}
ConsoleFunction( containerSearchCurrRadiusDist, F32, 1, 1, "Get the distance of the closest point of the current item from the center of the current initContainerRadiusSearch.")
{
return gServerContainer.containerSearchCurrRadiusDist();
}
ConsoleFunction( containerRayCast, const char*, 4, 5, "( Point3F start, Point3F end, bitset mask, SceneObject exempt=NULL )"
"Cast a ray from start to end, checking for collision against items matching mask.\n\n"
"If exempt is specified, then it is temporarily excluded from collision checks (For "
"instance, you might want to exclude the player if said player was firing a weapon.)\n"
"@returns A string containing either null, if nothing was struck, or these fields:\n"
" - The ID of the object that was struck.\n"
" - The x, y, z position that it was struck.\n"
" - The x, y, z of the normal of the face that was struck.")
{
char *returnBuffer = Con::getReturnBuffer(256);
Point3F start, end;
dSscanf(argv[1], "%g %g %g", &start.x, &start.y, &start.z);
dSscanf(argv[2], "%g %g %g", &end.x, &end.y, &end.z);
U32 mask = dAtoi(argv[3]);
SceneObject* pExempt = NULL;
if (argc > 4) {
U32 exemptId = dAtoi(argv[4]);
Sim::findObject(exemptId, pExempt);
}
if (pExempt)
pExempt->disableCollision();
RayInfo rinfo;
S32 ret = 0;
if (gServerContainer.castRay(start, end, mask, &rinfo) == true)
ret = rinfo.object->getId();
if (pExempt)
pExempt->enableCollision();
// add the hit position and normal?
if(ret)
{
dSprintf(returnBuffer, 256, "%d %g %g %g %g %g %g",
ret, rinfo.point.x, rinfo.point.y, rinfo.point.z,
rinfo.normal.x, rinfo.normal.y, rinfo.normal.z);
}
else
{
returnBuffer[0] = '0';
returnBuffer[1] = '\0';
}
return(returnBuffer);
}
ConsoleFunctionGroupEnd( Containers );
// Utility method for bin insertion
void getBinRange(const F32 min,
const F32 max,
U32& minBin,
U32& maxBin)
{
AssertFatal(max >= min, "Error, bad range! in getBinRange");
if ((max - min) >= Container::csmTotalBinSize) {
F32 minCoord = mFmod(min, Container::csmTotalBinSize);
if (minCoord < 0.0f) {
minCoord += Container::csmTotalBinSize;
// This is truly lame, but it can happen. There must be a better way to
// deal with this.
if (minCoord == Container::csmTotalBinSize)
minCoord = Container::csmTotalBinSize - 0.01;
}
AssertFatal(minCoord >= 0.0 && minCoord < Container::csmTotalBinSize, "Bad minCoord");
minBin = U32(minCoord / Container::csmBinSize);
AssertFatal(minBin < Container::csmNumBins, avar("Error, bad clipping! (%g, %d)", minCoord, minBin));
maxBin = minBin + (Container::csmNumBins - 1);
return;
} else {
F32 minCoord = mFmod(min, Container::csmTotalBinSize);
if (minCoord < 0.0f) {
minCoord += Container::csmTotalBinSize;
// This is truly lame, but it can happen. There must be a better way to
// deal with this.
if (minCoord == Container::csmTotalBinSize)
minCoord = Container::csmTotalBinSize - 0.01;
}
AssertFatal(minCoord >= 0.0 && minCoord < Container::csmTotalBinSize, "Bad minCoord");
F32 maxCoord = mFmod(max, Container::csmTotalBinSize);
if (maxCoord < 0.0f) {
maxCoord += Container::csmTotalBinSize;
// This is truly lame, but it can happen. There must be a better way to
// deal with this.
if (maxCoord == Container::csmTotalBinSize)
maxCoord = Container::csmTotalBinSize - 0.01;
}
AssertFatal(maxCoord >= 0.0 && maxCoord < Container::csmTotalBinSize, "Bad maxCoord");
minBin = U32(minCoord / Container::csmBinSize);
maxBin = U32(maxCoord / Container::csmBinSize);
AssertFatal(minBin < Container::csmNumBins, avar("Error, bad clipping(min)! (%g, %d)", maxCoord, minBin));
AssertFatal(minBin < Container::csmNumBins, avar("Error, bad clipping(max)! (%g, %d)", maxCoord, maxBin));
// MSVC6 seems to be generating some bad floating point code around
// here when full optimizations are on. The min != max test should
// not be needed, but it clears up the VC issue.
if (min != max && minCoord >= maxCoord)
maxBin += Container::csmNumBins;
AssertFatal(maxBin >= minBin, "Error, min should always be less than max!");
}
}
//--------------------------------------------------------------------------
//-------------------------------------- SceneObject implementation
//
LightInfo SceneObject::LightingInfo::smAmbientLight;
SceneObject::SceneObject()
{
overrideOptions = true;
receiveLMLighting = true;
receiveSunLight = true;
useAdaptiveSelfIllumination = false;
useCustomAmbientLighting = false;
customAmbientForSelfIllumination = false;
customAmbientLighting = ColorF(0.0f, 0.0f, 0.0f);
lightGroupName = NULL;
useLightingOcclusion = true;
moveSnapshotId = 0;
mContainer = 0;
mTypeMask = DefaultObjectType;
mCollisionCount = 0;
mGlobalBounds = false;
mObjScale.set(1,1,1);
mObjToWorld.identity();
mWorldToObj.identity();
mObjBox = Box3F(Point3F(0, 0, 0), Point3F(0, 0, 0));
mWorldBox = Box3F(Point3F(0, 0, 0), Point3F(0, 0, 0));
mWorldSphere = SphereF(Point3F(0, 0, 0), 0);
mRenderObjToWorld.identity();
mRenderWorldToObj.identity();
mRenderWorldBox = Box3F(Point3F(0, 0, 0), Point3F(0, 0, 0));
mRenderWorldSphere = SphereF(Point3F(0, 0, 0), 0);
mContainerSeqKey = 0;
mBinRefHead = NULL;
mSceneManager = NULL;
mZoneRangeStart = 0xFFFFFFFF;
mNumCurrZones = 0;
mZoneRefHead = NULL;
mLastState = NULL;
mLastStateKey = 0;
mBinMinX = 0xFFFFFFFF;
mBinMaxX = 0xFFFFFFFF;
mBinMinY = 0xFFFFFFFF;
mBinMaxY = 0xFFFFFFFF;
}
SceneObject::~SceneObject()
{
AssertFatal(mZoneRangeStart == 0xFFFFFFFF && mSceneManager == NULL,
"Error, SceneObject not properly removed from sceneGraph");
AssertFatal(mZoneRefHead == NULL && mBinRefHead == NULL,
"Error, still linked in reference lists!");
unlink();
}
//----------------------------------------------------------------------------
const char* SceneObject::scriptThis()
{
return Con::getIntArg(getId());
}
//--------------------------------------------------------------------------
void SceneObject::buildConvex(const Box3F&, Convex*)
{
return;
}
bool SceneObject::buildPolyList(AbstractPolyList*, const Box3F&, const SphereF&)
{
return false;
}
BSPNode *SceneObject::buildCollisionBSP(BSPTree*, const Box3F&, const SphereF&)
{
return NULL;
}
bool SceneObject::castRay(const Point3F&, const Point3F&, RayInfo*)
{
return false;
}
bool SceneObject::collideBox(const Point3F &start, const Point3F &end, RayInfo *info)
{
const F32 * pStart = (const F32*)start;
const F32 * pEnd = (const F32*)end;
const F32 * pMin = (const F32*)mObjBox.min;
const F32 * pMax = (const F32*)mObjBox.max;
F32 maxStartTime = -1;
F32 minEndTime = 1;
F32 startTime;
F32 endTime;
// used for getting normal
U32 hitIndex;
U32 side;
// walk the axis
for(U32 i = 0; i < 3; i++)
{
//
if(pStart[i] < pEnd[i])
{
if(pEnd[i] < pMin[i] || pStart[i] > pMax[i])
return(false);
F32 dist = pEnd[i] - pStart[i];
startTime = (pStart[i] < pMin[i]) ? (pMin[i] - pStart[i]) / dist : -1;
endTime = (pEnd[i] > pMax[i]) ? (pMax[i] - pStart[i]) / dist : 1;
side = 1;
}
else
{
if(pStart[i] < pMin[i] || pEnd[i] > pMax[i])
return(false);
F32 dist = pStart[i] - pEnd[i];
startTime = (pStart[i] > pMax[i]) ? (pStart[i] - pMax[i]) / dist : -1;
endTime = (pEnd[i] < pMin[i]) ? (pStart[i] - pMin[i]) / dist : 1;
side = 0;
}
//
if(startTime > maxStartTime)
{
maxStartTime = startTime;
hitIndex = i * 2 + side;
}
if(endTime < minEndTime)
minEndTime = endTime;
if(minEndTime < maxStartTime)
return(false);
}
// fail if inside
if(maxStartTime < 0.f)
return(false);
//
static Point3F boxNormals[] = {
Point3F( 1, 0, 0),
Point3F(-1, 0, 0),
Point3F( 0, 1, 0),
Point3F( 0,-1, 0),
Point3F( 0, 0, 1),
Point3F( 0, 0,-1),
};
//
info->t = maxStartTime;
info->object = this;
mObjToWorld.mulV(boxNormals[hitIndex], &info->normal);
info->material = 0;
return(true);
}
void SceneObject::disableCollision()
{
mCollisionCount++;
AssertFatal(mCollisionCount < 50, "Wow, that's too much");
}
bool SceneObject::isDisplacable() const
{
return false;
}
Point3F SceneObject::getMomentum() const
{
AssertFatal(false, "(SceneObject::getMomentum): Should never be called, this is just a default");
return Point3F(0, 0, 0);
}
void SceneObject::setMomentum(const Point3F&)
{
AssertFatal(false, "(SceneObject::setMomentum): Should never be called, this is just a default");
}
F32 SceneObject::getMass() const
{
AssertFatal(false, "(SceneObject::getMass): Should never be called, this is just a default");
return 1.0;
}
bool SceneObject::displaceObject(const Point3F&)
{
AssertFatal(false, "(SceneObject::displaceObject): Should never be called, this is just a default");
return false;
}
void SceneObject::enableCollision()
{
if (mCollisionCount)
--mCollisionCount;
}
bool SceneObject::onAdd()
{
if (Parent::onAdd() == false)
return false;
mWorldToObj = mObjToWorld;
mWorldToObj.affineInverse();
resetWorldBox();
setRenderTransform(mObjToWorld);
return true;
}
void SceneObject::addToScene()
{
if(isClientObject())
{
gClientContainer.addObject(this);
gClientSceneGraph->addObjectToScene(this);
}
else
{
gServerContainer.addObject(this);
gServerSceneGraph->addObjectToScene(this);
}
}
void SceneObject::onRemove()
{
Parent::onRemove();
}
void SceneObject::inspectPostApply()
{
if(isServerObject()) {
setTransform(getTransform());
setScale(getScale());
}
}
void SceneObject::removeFromScene()
{
if (mSceneManager != NULL)
mSceneManager->removeObjectFromScene(this);
if (getContainer())
getContainer()->removeObject(this);
}
void SceneObject::setTransform(const MatrixF& mat)
{
mObjToWorld = mWorldToObj = mat;
mWorldToObj.affineInverse();
resetWorldBox();
if (mSceneManager != NULL && mNumCurrZones != 0) {
mSceneManager->zoneRemove(this);
mSceneManager->zoneInsert(this);
if (getContainer())
getContainer()->checkBins(this);
}
if(isClientObject())
{
mLightingInfo.mDirty = true;
moveSnapshotId++;
}
setRenderTransform(mat);
}
void SceneObject::setScale(const VectorF & scale)
{
mObjScale = scale;
setTransform(MatrixF(mObjToWorld));
// Make sure that any subclasses of me get a chance to react to the
// scale being changed.
onScaleChanged();
setMaskBits( ScaleMask );
}
void SceneObject::resetWorldBox()
{
AssertFatal(mObjBox.isValidBox(), "Bad object box!");
mWorldBox = mObjBox;
mWorldBox.min.convolve(mObjScale);
mWorldBox.max.convolve(mObjScale);
mObjToWorld.mul(mWorldBox);
AssertFatal(mWorldBox.isValidBox(), "Bad world box!");
// Create mWorldSphere from mWorldBox
mWorldBox.getCenter(&mWorldSphere.center);
mWorldSphere.radius = (mWorldBox.max - mWorldSphere.center).len();
}
void SceneObject::setRenderTransform(const MatrixF& mat)
{
mRenderObjToWorld = mRenderWorldToObj = mat;
mRenderWorldToObj.affineInverse();
AssertFatal(mObjBox.isValidBox(), "Bad object box!");
resetRenderWorldBox();
}
void SceneObject::resetRenderWorldBox()
{
AssertFatal(mObjBox.isValidBox(), "Bad object box!");
mRenderWorldBox = mObjBox;
mRenderWorldBox.min.convolve(mObjScale);
mRenderWorldBox.max.convolve(mObjScale);
mRenderObjToWorld.mul(mRenderWorldBox);
// #if defined(__linux__) || defined(__OpenBSD__)
// if( !mRenderWorldBox.isValidBox() ) {
// // reset
// mRenderWorldBox.min.set( 0.0f, 0.0f, 0.0f );
// mRenderWorldBox.max.set( 0.0f, 0.0f, 0.0f );
// }
// #else
AssertFatal(mRenderWorldBox.isValidBox(), "Bad world box!");
//#endif
// Create mRenderWorldSphere from mRenderWorldBox
mRenderWorldBox.getCenter(&mRenderWorldSphere.center);
mRenderWorldSphere.radius = (mRenderWorldBox.max - mRenderWorldSphere.center).len();
}
void SceneObject::initPersistFields()
{
Parent::initPersistFields();
addGroup("Transform"); // MM: Added group header.
addField("position", TypeMatrixPosition, Offset(mObjToWorld, SceneObject));
addField("rotation", TypeMatrixRotation, Offset(mObjToWorld, SceneObject));
addField("scale", TypePoint3F, Offset(mObjScale, SceneObject));
endGroup("Transform"); // MM: Added group footer.
}
bool SceneObject::onSceneAdd(SceneGraph* pGraph)
{
mSceneManager = pGraph;
mSceneManager->zoneInsert(this);
return true;
}
void SceneObject::onSceneRemove()
{
mSceneManager->zoneRemove(this);
mSceneManager = NULL;
}
void SceneObject::onScaleChanged()
{
// Override this function where you need to specially handle something
// when the size of your object has been changed.
}
bool SceneObject::prepRenderImage(SceneState*, const U32, const U32, const bool)
{
return false;
}
void SceneObject::renderObject(SceneState*, SceneRenderImage*)
{
//
}
bool SceneObject::scopeObject(const Point3F& /*rootPosition*/,
const F32 /*rootDistance*/,
bool* /*zoneScopeState*/)
{
AssertFatal(false, "Error, this should never be called on a bare (non-zonemanaging) object. All zone managers must override this function");
return false;
}
//--------------------------------------------------------------------------
//--------------------------------------------------------------------------
// A quick note about these three functions. They should only be called
// on zoneManagers, but since we don't want to force every non-zoneManager
// to implement them, they assert out instead of being pure virtual.
//
bool SceneObject::getOverlappingZones(SceneObject*, U32*, U32* numZones)
{
AssertISV(false, "Pure virtual (essentially) function called. Should never execute this");
*numZones = 0;
return false;
}
U32 SceneObject::getPointZone(const Point3F&)
{
AssertISV(false, "Error, (essentially) pure virtual function called. Any object this is called on should override this function");
return 0;
}
void SceneObject::transformModelview(const U32, const MatrixF&, MatrixF*)
{
AssertISV(false, "Error, (essentially) pure virtual function called. Any object this is called on should override this function");
}
void SceneObject::transformPosition(const U32, Point3F&)
{
AssertISV(false, "Error, (essentially) pure virtual function called. Any object this is called on should override this function");
}
bool SceneObject::computeNewFrustum(const U32, const F64*, const F64, const F64,
const RectI&, F64*, RectI&, const bool)
{
AssertISV(false, "Error, (essentially) pure virtual function called. Any object this is called on should override this function");
return false;
}
void SceneObject::openPortal(const U32 /*portalIndex*/,
SceneState* /*pCurrState*/,
SceneState* /*pParentState*/)
{
AssertISV(false, "Error, (essentially) pure virtual function called. Any object this is called on should override this function");
}
void SceneObject::closePortal(const U32 /*portalIndex*/,
SceneState* /*pCurrState*/,
SceneState* /*pParentState*/)
{
AssertISV(false, "Error, (essentially) pure virtual function called. Any object this is called on should override this function");
}
void SceneObject::getWSPortalPlane(const U32 /*portalIndex*/, PlaneF*)
{
AssertISV(false, "Error, (essentially) pure virtual function called. Any object this is called on should override this function");
}
//----------------------------------------------------------------------------
//-------------------------------------- Container implementation
//
Container::Link::Link()
{
next = prev = this;
}
void Container::Link::unlink()
{
next->prev = prev;
prev->next = next;
next = prev = this;
}
void Container::Link::linkAfter(Container::Link* ptr)
{
next = ptr->next;
next->prev = this;
prev = ptr;
prev->next = this;
}
//----------------------------------------------------------------------------
Container gServerContainer;
Container gClientContainer;
Container::Container()
{
mEnd.next = mEnd.prev = &mStart;
mStart.next = mStart.prev = &mEnd;
if (!sBoxPolyhedron.edgeList.size())
{
Box3F box;
box.min.set(-1,-1,-1);
box.max.set(+1,+1,+1);
MatrixF imat(1);
sBoxPolyhedron.buildBox(imat,box);
}
mBinArray = new SceneObjectRef[csmNumBins * csmNumBins];
for (U32 i = 0; i < csmNumBins; i++)
{
U32 base = i * csmNumBins;
for (U32 j = 0; j < csmNumBins; j++)
{
mBinArray[base + j].object = NULL;
mBinArray[base + j].nextInBin = NULL;
mBinArray[base + j].prevInBin = NULL;
mBinArray[base + j].nextInObj = NULL;
}
}
mOverflowBin.object = NULL;
mOverflowBin.nextInBin = NULL;
mOverflowBin.prevInBin = NULL;
mOverflowBin.nextInObj = NULL;
VECTOR_SET_ASSOCIATION(mRefPoolBlocks);
VECTOR_SET_ASSOCIATION(mSearchList);
mFreeRefPool = NULL;
addRefPoolBlock();
cleanupSearchVectors();
}
Container::~Container()
{
for (U32 i = 0; i < mRefPoolBlocks.size(); i++)
{
SceneObjectRef* pool = mRefPoolBlocks[i];
for (U32 j = 0; j < csmRefPoolBlockSize; j++)
{
// Depressingly, this can give weird results if its pointing at bad memory...
if(pool[j].object != NULL)
Con::warnf("Error, a %s (%x) isn't properly out of the bins!", pool[j].object->getClassName(), pool[j].object);
// If you're getting this it means that an object created didn't
// remove itself from its container before we destroyed the
// container. Typically you get this behavior from particle
// emitters, as they try to hang around until all their particles
// die. In general it's benign, though if you get it for things
// that aren't particle emitters it can be a bad sign!
}
delete [] pool;
}
mFreeRefPool = NULL;
cleanupSearchVectors();
}
bool Container::addObject(SceneObject* obj)
{
AssertFatal(obj->mContainer == NULL, "Adding already added object.");
obj->mContainer = this;
obj->linkAfter(&mStart);
insertIntoBins(obj);
return true;
}
bool Container::removeObject(SceneObject* obj)
{
AssertFatal(obj->mContainer == this, "Trying to remove from wrong container.");
removeFromBins(obj);
obj->mContainer = 0;
obj->unlink();
return true;
}
void Container::addRefPoolBlock()
{
mRefPoolBlocks.push_back(new SceneObjectRef[csmRefPoolBlockSize]);
for (U32 i = 0; i < csmRefPoolBlockSize-1; i++)
{
mRefPoolBlocks.last()[i].object = NULL;
mRefPoolBlocks.last()[i].prevInBin = NULL;
mRefPoolBlocks.last()[i].nextInBin = NULL;
mRefPoolBlocks.last()[i].nextInObj = &(mRefPoolBlocks.last()[i+1]);
}
mRefPoolBlocks.last()[csmRefPoolBlockSize-1].object = NULL;
mRefPoolBlocks.last()[csmRefPoolBlockSize-1].prevInBin = NULL;
mRefPoolBlocks.last()[csmRefPoolBlockSize-1].nextInBin = NULL;
mRefPoolBlocks.last()[csmRefPoolBlockSize-1].nextInObj = mFreeRefPool;
mFreeRefPool = &(mRefPoolBlocks.last()[0]);
}
void Container::insertIntoBins(SceneObject* obj)
{
AssertFatal(obj != NULL, "No object?");
AssertFatal(obj->mBinRefHead == NULL, "Error, already have a bin chain!");
// The first thing we do is find which bins are covered in x and y...
const Box3F* pWBox = &obj->getWorldBox();
U32 minX, maxX, minY, maxY;
getBinRange(pWBox->min.x, pWBox->max.x, minX, maxX);
getBinRange(pWBox->min.y, pWBox->max.y, minY, maxY);
// Store the current regions for later queries
obj->mBinMinX = minX;
obj->mBinMaxX = maxX;
obj->mBinMinY = minY;
obj->mBinMaxY = maxY;
// For huge objects, dump them into the overflow bin. Otherwise, everything
// goes into the grid...
if ((maxX - minX + 1) < csmNumBins || (maxY - minY + 1) < csmNumBins && !obj->isGlobalBounds())
{
SceneObjectRef** pCurrInsert = &obj->mBinRefHead;
for (U32 i = minY; i <= maxY; i++)
{
U32 insertY = i % csmNumBins;
U32 base = insertY * csmNumBins;
for (U32 j = minX; j <= maxX; j++)
{
U32 insertX = j % csmNumBins;
SceneObjectRef* ref = allocateObjectRef();
ref->object = obj;
ref->nextInBin = mBinArray[base + insertX].nextInBin;
ref->prevInBin = &mBinArray[base + insertX];
ref->nextInObj = NULL;
if (mBinArray[base + insertX].nextInBin)
mBinArray[base + insertX].nextInBin->prevInBin = ref;
mBinArray[base + insertX].nextInBin = ref;
*pCurrInsert = ref;
pCurrInsert = &ref->nextInObj;
}
}
}
else
{
SceneObjectRef* ref = allocateObjectRef();
ref->object = obj;
ref->nextInBin = mOverflowBin.nextInBin;
ref->prevInBin = &mOverflowBin;
ref->nextInObj = NULL;
if (mOverflowBin.nextInBin)
mOverflowBin.nextInBin->prevInBin = ref;
mOverflowBin.nextInBin = ref;
obj->mBinRefHead = ref;
}
}
void Container::insertIntoBins(SceneObject* obj,
U32 minX, U32 maxX,
U32 minY, U32 maxY)
{
AssertFatal(obj != NULL, "No object?");
AssertFatal(obj->mBinRefHead == NULL, "Error, already have a bin chain!");
// Store the current regions for later queries
obj->mBinMinX = minX;
obj->mBinMaxX = maxX;
obj->mBinMinY = minY;
obj->mBinMaxY = maxY;
// For huge objects, dump them into the overflow bin. Otherwise, everything
// goes into the grid...
//
if ((maxX - minX + 1) < csmNumBins || (maxY - minY + 1) < csmNumBins && !obj->isGlobalBounds())
{
SceneObjectRef** pCurrInsert = &obj->mBinRefHead;
for (U32 i = minY; i <= maxY; i++)
{
U32 insertY = i % csmNumBins;
U32 base = insertY * csmNumBins;
for (U32 j = minX; j <= maxX; j++)
{
U32 insertX = j % csmNumBins;
SceneObjectRef* ref = allocateObjectRef();
ref->object = obj;
ref->nextInBin = mBinArray[base + insertX].nextInBin;
ref->prevInBin = &mBinArray[base + insertX];
ref->nextInObj = NULL;
if (mBinArray[base + insertX].nextInBin)
mBinArray[base + insertX].nextInBin->prevInBin = ref;
mBinArray[base + insertX].nextInBin = ref;
*pCurrInsert = ref;
pCurrInsert = &ref->nextInObj;
}
}
}
else
{
SceneObjectRef* ref = allocateObjectRef();
ref->object = obj;
ref->nextInBin = mOverflowBin.nextInBin;
ref->prevInBin = &mOverflowBin;
ref->nextInObj = NULL;
if (mOverflowBin.nextInBin)
mOverflowBin.nextInBin->prevInBin = ref;
mOverflowBin.nextInBin = ref;
obj->mBinRefHead = ref;
}
}
void Container::removeFromBins(SceneObject* obj)
{
AssertFatal(obj != NULL, "No object?");
SceneObjectRef* chain = obj->mBinRefHead;
obj->mBinRefHead = NULL;
while (chain)
{
SceneObjectRef* trash = chain;
chain = chain->nextInObj;
AssertFatal(trash->prevInBin != NULL, "Error, must have a previous entry in the bin!");
if (trash->nextInBin)
trash->nextInBin->prevInBin = trash->prevInBin;
trash->prevInBin->nextInBin = trash->nextInBin;
freeObjectRef(trash);
}
}
void Container::checkBins(SceneObject* obj)
{
AssertFatal(obj != NULL, "No object?");
if (obj->mBinRefHead == NULL)
{
insertIntoBins(obj);
return;
}
// Otherwise, the object is already in the bins. Let's see if it has strayed out of
// the bins that it's currently in...
const Box3F* pWBox = &obj->getWorldBox();
U32 minX, maxX, minY, maxY;
getBinRange(pWBox->min.x, pWBox->max.x, minX, maxX);
getBinRange(pWBox->min.y, pWBox->max.y, minY, maxY);
if (obj->mBinMinX != minX || obj->mBinMaxX != maxX ||
obj->mBinMinY != minY || obj->mBinMaxY != maxY)
{
// We have to rebin the object
removeFromBins(obj);
insertIntoBins(obj, minX, maxX, minY, maxY);
}
}
void Container::findObjects(const Box3F& box, U32 mask, FindCallback callback, void *key)
{
U32 minX, maxX, minY, maxY;
getBinRange(box.min.x, box.max.x, minX, maxX);
getBinRange(box.min.y, box.max.y, minY, maxY);
smCurrSeqKey++;
for (U32 i = minY; i <= maxY; i++)
{
U32 insertY = i % csmNumBins;
U32 base = insertY * csmNumBins;
for (U32 j = minX; j <= maxX; j++)
{
U32 insertX = j % csmNumBins;
SceneObjectRef* chain = mBinArray[base + insertX].nextInBin;
while (chain)
{
if (chain->object->getContainerSeqKey() != smCurrSeqKey)
{
chain->object->setContainerSeqKey(smCurrSeqKey);
if ((chain->object->getType() & mask) != 0 &&
chain->object->isCollisionEnabled())
{
if (chain->object->getWorldBox().isOverlapped(box) || chain->object->isGlobalBounds())
{
(*callback)(chain->object,key);
}
}
}
chain = chain->nextInBin;
}
}
}
SceneObjectRef* chain = mOverflowBin.nextInBin;
while (chain)
{
if (chain->object->getContainerSeqKey() != smCurrSeqKey)
{
chain->object->setContainerSeqKey(smCurrSeqKey);
if ((chain->object->getType() & mask) != 0 &&
chain->object->isCollisionEnabled())
{
if (chain->object->getWorldBox().isOverlapped(box) || chain->object->isGlobalBounds())
{
(*callback)(chain->object,key);
}
}
}
chain = chain->nextInBin;
}
}
void Container::polyhedronFindObjects(const Polyhedron& polyhedron, U32 mask, FindCallback callback, void *key)
{
U32 i;
Box3F box;
box.min.set(1e9, 1e9, 1e9);
box.max.set(-1e9, -1e9, -1e9);
for (i = 0; i < polyhedron.pointList.size(); i++)
{
box.min.setMin(polyhedron.pointList[i]);
box.max.setMax(polyhedron.pointList[i]);
}
U32 minX, maxX, minY, maxY;
getBinRange(box.min.x, box.max.x, minX, maxX);
getBinRange(box.min.y, box.max.y, minY, maxY);
smCurrSeqKey++;
for (i = minY; i <= maxY; i++)
{
U32 insertY = i % csmNumBins;
U32 base = insertY * csmNumBins;
for (U32 j = minX; j <= maxX; j++)
{
U32 insertX = j % csmNumBins;
SceneObjectRef* chain = mBinArray[base + insertX].nextInBin;
while (chain)
{
if (chain->object->getContainerSeqKey() != smCurrSeqKey)
{
chain->object->setContainerSeqKey(smCurrSeqKey);
if ((chain->object->getType() & mask) != 0 &&
chain->object->isCollisionEnabled())
{
if (chain->object->getWorldBox().isOverlapped(box) || chain->object->isGlobalBounds())
{
(*callback)(chain->object,key);
}
}
}
chain = chain->nextInBin;
}
}
}
SceneObjectRef* chain = mOverflowBin.nextInBin;
while (chain)
{
if (chain->object->getContainerSeqKey() != smCurrSeqKey)
{
chain->object->setContainerSeqKey(smCurrSeqKey);
if ((chain->object->getType() & mask) != 0 &&
chain->object->isCollisionEnabled())
{
if (chain->object->getWorldBox().isOverlapped(box) || chain->object->isGlobalBounds())
{
(*callback)(chain->object,key);
}
}
}
chain = chain->nextInBin;
}
}
//----------------------------------------------------------------------------
// DMMNOTE: There are still some optimizations to be done here. In particular:
// - After checking the overflow bin, we can potentially shorten the line
// that we rasterize against the grid if there is a collision with say,
// the terrain.
// - The optimal grid size isn't necessarily what we have set here. possibly
// a resolution of 16 meters would give better results
// - The line rasterizer is pretty lame. Unfortunately we can't use a
// simple bres. here, since we need to check every grid element that the line
// passes through, which bres does _not_ do for us. Possibly there's a
// rasterizer for anti-aliased lines that will serve better than what
// we have below.
//
bool Container::castRay(const Point3F &start, const Point3F &end, U32 mask, RayInfo* info)
{
PROFILE_START(ContainerCastRay);
F32 currentT = 2.0;
smCurrSeqKey++;
SceneObjectRef* chain = mOverflowBin.nextInBin;
static RayInfo ri;
ri.material = 0;
while (chain)
{
SceneObject* ptr = chain->object;
if (ptr->getContainerSeqKey() != smCurrSeqKey)
{
ptr->setContainerSeqKey(smCurrSeqKey);
// In the overflow bin, the world box is always going to intersect the line,
// so we can omit that test...
if ((ptr->getType() & mask) != 0 &&
ptr->isCollisionEnabled() == true)
{
Point3F xformedStart, xformedEnd;
ptr->mWorldToObj.mulP(start, &xformedStart);
ptr->mWorldToObj.mulP(end, &xformedEnd);
xformedStart.convolveInverse(ptr->mObjScale);
xformedEnd.convolveInverse(ptr->mObjScale);
if (ptr->castRay(xformedStart, xformedEnd, &ri))
{
if(ri.t < currentT)
{
*info = ri;
info->point.interpolate(start, end, info->t);
currentT = ri.t;
}
}
}
}
chain = chain->nextInBin;
}
// These are just for rasterizing the line against the grid. We want the x coord
// of the start to be <= the x coord of the end
Point3F normalStart, normalEnd;
if (start.x <= end.x)
{
normalStart = start;
normalEnd = end;
}
else
{
normalStart = end;
normalEnd = start;
}
// Ok, let's scan the grids. The simplest way to do this will be to scan across in
// x, finding the y range for each affected bin...
U32 minX, maxX;
U32 minY, maxY;
//if (normalStart.x == normalEnd.x)
// Con::printf("X start = %g, end = %g", normalStart.x, normalEnd.x);
getBinRange(normalStart.x, normalEnd.x, minX, maxX);
getBinRange(getMin(normalStart.y, normalEnd.y),
getMax(normalStart.y, normalEnd.y), minY, maxY);
//if (normalStart.x == normalEnd.x && minX != maxX)
// Con::printf("X min = %d, max = %d", minX, maxX);
//if (normalStart.y == normalEnd.y && minY != maxY)
// Con::printf("Y min = %d, max = %d", minY, maxY);
// We'll optimize the case that the line is contained in one bin row or column, which
// will be quite a few lines. No sense doing more work than we have to...
//
if ((mFabs(normalStart.x - normalEnd.x) < csmTotalBinSize && minX == maxX) ||
(mFabs(normalStart.y - normalEnd.y) < csmTotalBinSize && minY == maxY))
{
U32 count;
U32 incX, incY;
if (minX == maxX)
{
count = maxY - minY + 1;
incX = 0;
incY = 1;
}
else
{
count = maxX - minX + 1;
incX = 1;
incY = 0;
}
U32 x = minX;
U32 y = minY;
for (U32 i = 0; i < count; i++)
{
U32 checkX = x % csmNumBins;
U32 checkY = y % csmNumBins;
SceneObjectRef* chain = mBinArray[(checkY * csmNumBins) + checkX].nextInBin;
while (chain)
{
SceneObject* ptr = chain->object;
if (ptr->getContainerSeqKey() != smCurrSeqKey)
{
ptr->setContainerSeqKey(smCurrSeqKey);
if ((ptr->getType() & mask) != 0 &&
ptr->isCollisionEnabled() == true)
{
if (ptr->getWorldBox().collideLine(start, end) || chain->object->isGlobalBounds())
{
Point3F xformedStart, xformedEnd;
ptr->mWorldToObj.mulP(start, &xformedStart);
ptr->mWorldToObj.mulP(end, &xformedEnd);
xformedStart.convolveInverse(ptr->mObjScale);
xformedEnd.convolveInverse(ptr->mObjScale);
RayInfo ri;
if (ptr->castRay(xformedStart, xformedEnd, &ri))
{
if(ri.t < currentT)
{
*info = ri;
info->point.interpolate(start, end, info->t);
currentT = ri.t;
}
}
}
}
}
chain = chain->nextInBin;
}
x += incX;
y += incY;
}
}
else
{
// Oh well, let's earn our keep. We know that after the above conditional, we're
// going to cross at least one boundary, so that simplifies our job...
F32 currStartX = normalStart.x;
AssertFatal(currStartX != normalEnd.x, "This is going to cause problems in Container::castRay");
while (currStartX != normalEnd.x)
{
F32 currEndX = getMin(currStartX + csmTotalBinSize, normalEnd.x);
F32 currStartT = (currStartX - normalStart.x) / (normalEnd.x - normalStart.x);
F32 currEndT = (currEndX - normalStart.x) / (normalEnd.x - normalStart.x);
F32 y1 = normalStart.y + (normalEnd.y - normalStart.y) * currStartT;
F32 y2 = normalStart.y + (normalEnd.y - normalStart.y) * currEndT;
U32 subMinX, subMaxX;
getBinRange(currStartX, currEndX, subMinX, subMaxX);
F32 subStartX = currStartX;
F32 subEndX = currStartX;
if (currStartX < 0.0f)
subEndX -= mFmod(subEndX, csmBinSize);
else
subEndX += (csmBinSize - mFmod(subEndX, csmBinSize));
for (U32 currXBin = subMinX; currXBin <= subMaxX; currXBin++)
{
U32 checkX = currXBin % csmNumBins;
F32 subStartT = (subStartX - currStartX) / (currEndX - currStartX);
F32 subEndT = getMin(F32((subEndX - currStartX) / (currEndX - currStartX)), 1.f);
F32 subY1 = y1 + (y2 - y1) * subStartT;
F32 subY2 = y1 + (y2 - y1) * subEndT;
U32 newMinY, newMaxY;
getBinRange(getMin(subY1, subY2), getMax(subY1, subY2), newMinY, newMaxY);
for (U32 i = newMinY; i <= newMaxY; i++)
{
U32 checkY = i % csmNumBins;
SceneObjectRef* chain = mBinArray[(checkY * csmNumBins) + checkX].nextInBin;
while (chain)
{
SceneObject* ptr = chain->object;
if (ptr->getContainerSeqKey() != smCurrSeqKey)
{
ptr->setContainerSeqKey(smCurrSeqKey);
if ((ptr->getType() & mask) != 0 &&
ptr->isCollisionEnabled() == true)
{
if (ptr->getWorldBox().collideLine(start, end))
{
Point3F xformedStart, xformedEnd;
ptr->mWorldToObj.mulP(start, &xformedStart);
ptr->mWorldToObj.mulP(end, &xformedEnd);
xformedStart.convolveInverse(ptr->mObjScale);
xformedEnd.convolveInverse(ptr->mObjScale);
if (ptr->castRay(xformedStart, xformedEnd, &ri))
{
if(ri.t < currentT)
{
*info = ri;
info->point.interpolate(start, end, info->t);
currentT = ri.t;
}
}
}
}
}
chain = chain->nextInBin;
}
}
subStartX = subEndX;
subEndX = getMin(subEndX + csmBinSize, currEndX);
}
currStartX = currEndX;
}
}
// Bump the normal into worldspace if appropriate.
if(currentT != 2)
{
PlaneF fakePlane;
fakePlane.x = info->normal.x;
fakePlane.y = info->normal.y;
fakePlane.z = info->normal.z;
fakePlane.d = 0;
PlaneF result;
mTransformPlane(info->object->getTransform(), info->object->getScale(), fakePlane, &result);
info->normal = result;
PROFILE_END();
return true;
}
else
{
// Do nothing and exit...
PROFILE_END();
return false;
}
}
// collide with the objects projected object box
bool Container::collideBox(const Point3F &start, const Point3F &end, U32 mask, RayInfo * info)
{
F32 currentT = 2;
for (Link* itr = mStart.next; itr != &mEnd; itr = itr->next)
{
SceneObject* ptr = static_cast<SceneObject*>(itr);
if (ptr->getType() & mask && !ptr->mCollisionCount)
{
Point3F xformedStart, xformedEnd;
ptr->mWorldToObj.mulP(start, &xformedStart);
ptr->mWorldToObj.mulP(end, &xformedEnd);
xformedStart.convolveInverse(ptr->mObjScale);
xformedEnd.convolveInverse(ptr->mObjScale);
RayInfo ri;
if(ptr->collideBox(xformedStart, xformedEnd, &ri))
{
if(ri.t < currentT)
{
*info = ri;
info->point.interpolate(start, end, info->t);
currentT = ri.t;
}
}
}
}
return currentT != 2;
}
//----------------------------------------------------------------------------
static void buildCallback(SceneObject* object,void *key)
{
Container::CallbackInfo* info = reinterpret_cast<Container::CallbackInfo*>(key);
object->buildPolyList(info->polyList,info->boundingBox,info->boundingSphere);
}
//----------------------------------------------------------------------------
bool Container::buildPolyList(const Box3F& box, U32 mask, AbstractPolyList* polyList,FindCallback callback,void *key)
{
CallbackInfo info;
info.boundingBox = box;
info.polyList = polyList;
info.key = key;
// Build bounding sphere
info.boundingSphere.center = (info.boundingBox.min + info.boundingBox.max) * 0.5;
VectorF bv = box.max - info.boundingSphere.center;
info.boundingSphere.radius = bv.len();
sPolyList = polyList;
findObjects(box,mask,callback? callback: buildCallback,&info);
return !polyList->isEmpty();
}
//----------------------------------------------------------------------------
bool Container::buildCollisionList(const Box3F& box,
const Point3F& start,
const Point3F& end,
const VectorF& velocity,
U32 mask,
CollisionList* collisionList,
FindCallback callback,
void * key,
const Box3F* queryExpansion)
{
VectorF vector = end - start;
if (mFabs(vector.x) + mFabs(vector.y) + mFabs(vector.z) == 0)
return false;
CallbackInfo info;
info.key = key;
// Polylist bounding box & sphere
info.boundingBox.min = info.boundingBox.max = start;
info.boundingBox.min.setMin(end);
info.boundingBox.max.setMax(end);
info.boundingBox.min += box.min;
info.boundingBox.max += box.max;
info.boundingSphere.center = (info.boundingBox.min + info.boundingBox.max) * 0.5;
VectorF bv = info.boundingBox.max - info.boundingSphere.center;
info.boundingSphere.radius = bv.len();
// Box polyhedron edges & planes normals are always the same,
// just need to fill in the vertices and plane.d
Point3F* point = &sBoxPolyhedron.pointList[0];
point[0].x = point[1].x = point[4].x = point[5].x = box.min.x + start.x;
point[0].y = point[3].y = point[4].y = point[7].y = box.min.y + start.y;
point[2].x = point[3].x = point[6].x = point[7].x = box.max.x + start.x;
point[1].y = point[2].y = point[5].y = point[6].y = box.max.y + start.y;
point[0].z = point[1].z = point[2].z = point[3].z = box.min.z + start.z;
point[4].z = point[5].z = point[6].z = point[7].z = box.max.z + start.z;
PlaneF* plane = &sBoxPolyhedron.planeList[0];
plane[0].d = point[0].x;
plane[3].d = point[0].y;
plane[4].d = point[0].z;
plane[1].d = -point[6].y;
plane[2].d = -point[6].x;
plane[5].d = -point[6].z;
// Extruded
sExtrudedPolyList.extrude(sBoxPolyhedron,vector);
sExtrudedPolyList.setVelocity(velocity);
sExtrudedPolyList.setCollisionList(collisionList);
if (velocity.isZero())
{
sExtrudedPolyList.clearInterestNormal();
} else
{
Point3F normVec = velocity;
normVec.normalize();
sExtrudedPolyList.setInterestNormal(normVec);
}
info.polyList = &sExtrudedPolyList;
// Optional expansion of the query box
Box3F queryBox = info.boundingBox;
if (queryExpansion)
{
queryBox.min += queryExpansion->min;
queryBox.max += queryExpansion->max;
}
// Query main database
findObjects(queryBox,mask,callback? callback: buildCallback,&info);
sExtrudedPolyList.adjustCollisionTime();
return collisionList->count != 0;
}
//----------------------------------------------------------------------------
bool Container::buildCollisionList(const Polyhedron& polyhedron,
const Point3F& start, const Point3F& end,
const VectorF& velocity,
U32 mask, CollisionList* collisionList,
FindCallback callback, void *key)
{
VectorF vector = end - start;
if (mFabs(vector.x) + mFabs(vector.y) + mFabs(vector.z) == 0)
return false;
CallbackInfo info;
info.key = key;
// Polylist bounding box & sphere
Point3F min(1e10, 1e10, 1e10);
Point3F max(-1e10, -1e10, -1e10);
for (U32 i = 0; i < polyhedron.pointList.size(); i++)
{
min.setMin(polyhedron.pointList[i]);
max.setMax(polyhedron.pointList[i]);
}
info.boundingBox.min = info.boundingBox.max = Point3F(0, 0, 0);
info.boundingBox.min.setMin(vector);
info.boundingBox.max.setMax(vector);
info.boundingBox.min += min;
info.boundingBox.max += max;
info.boundingSphere.center = (info.boundingBox.min + info.boundingBox.max) * 0.5;
VectorF bv = info.boundingBox.max - info.boundingSphere.center;
info.boundingSphere.radius = bv.len();
// Extruded
sExtrudedPolyList.extrude(polyhedron, vector);
sExtrudedPolyList.setVelocity(velocity);
if (velocity.isZero())
{
sExtrudedPolyList.clearInterestNormal();
}
else
{
Point3F normVec = velocity;
normVec.normalize();
sExtrudedPolyList.setInterestNormal(normVec);
}
sExtrudedPolyList.setCollisionList(collisionList);
info.polyList = &sExtrudedPolyList;
Box3F queryBox = info.boundingBox;
// Query main database
findObjects(queryBox, mask, callback ? callback : buildCallback, &info);
sExtrudedPolyList.adjustCollisionTime();
return collisionList->count != 0;
}
void Container::cleanupSearchVectors()
{
for (U32 i = 0; i < mSearchList.size(); i++)
delete mSearchList[i];
mSearchList.clear();
mCurrSearchPos = -1;
}
static Point3F sgSortReferencePoint;
int QSORT_CALLBACK cmpSearchPointers(const void* inP1, const void* inP2)
{
SimObjectPtr<SceneObject>** p1 = (SimObjectPtr<SceneObject>**)inP1;
SimObjectPtr<SceneObject>** p2 = (SimObjectPtr<SceneObject>**)inP2;
Point3F temp;
F32 d1, d2;
if (bool(**p1))
{
(**p1)->getWorldBox().getCenter(&temp);
d1 = (temp - sgSortReferencePoint).len();
}
else
{
d1 = 0;
}
if (bool(**p2))
{
(**p2)->getWorldBox().getCenter(&temp);
d2 = (temp - sgSortReferencePoint).len();
}
else
{
d2 = 0;
}
if (d1 > d2)
return 1;
else if (d1 < d2)
return -1;
else
return 0;
}
void Container::initRadiusSearch(const Point3F& searchPoint,
const F32 searchRadius,
const U32 searchMask)
{
AssertFatal(this == &gServerContainer, "Abort. Searches only allowed on server container");
cleanupSearchVectors();
mSearchReferencePoint = searchPoint;
Box3F queryBox(searchPoint, searchPoint);
queryBox.min -= Point3F(searchRadius, searchRadius, searchRadius);
queryBox.max += Point3F(searchRadius, searchRadius, searchRadius);
SimpleQueryList queryList;
findObjects(queryBox, searchMask, SimpleQueryList::insertionCallback, &queryList);
F32 radiusSquared = searchRadius * searchRadius;
const F32* pPoint = &searchPoint.x;
for (U32 i = 0; i < queryList.mList.size(); i++)
{
const F32* bMins;
const F32* bMaxs;
bMins = &queryList.mList[i]->getWorldBox().min.x;
bMaxs = &queryList.mList[i]->getWorldBox().max.x;
F32 sum = 0;
for (U32 j = 0; j < 3; j++)
{
if (pPoint[j] < bMins[j])
sum += (pPoint[j] - bMins[j])*(pPoint[j] - bMins[j]);
else if (pPoint[j] > bMaxs[j])
sum += (pPoint[j] - bMaxs[j])*(pPoint[j] - bMaxs[j]);
}
if (sum < radiusSquared || queryList.mList[i]->isGlobalBounds())
{
mSearchList.push_back(new SimObjectPtr<SceneObject>);
*(mSearchList.last()) = queryList.mList[i];
}
}
if (mSearchList.size() != 0)
{
sgSortReferencePoint = mSearchReferencePoint;
dQsort(mSearchList.address(), mSearchList.size(),
sizeof(SimObjectPtr<SceneObject>*), cmpSearchPointers);
}
}
U32 Container::containerSearchNext()
{
AssertFatal(this == &gServerContainer, "Abort. Searches only allowed on server container");
if (mCurrSearchPos >= mSearchList.size())
return 0;
mCurrSearchPos++;
while (mCurrSearchPos < mSearchList.size() && bool(*mSearchList[mCurrSearchPos]) == false)
mCurrSearchPos++;
if (mCurrSearchPos == mSearchList.size())
return 0;
return (*mSearchList[mCurrSearchPos])->getId();
}
F32 Container::containerSearchCurrDist()
{
AssertFatal(this == &gServerContainer, "Abort. Searches only allowed on server container");
AssertFatal(mCurrSearchPos != -1, "Error, must call containerSearchNext before containerSearchCurrDist");
if (mCurrSearchPos == -1 || mCurrSearchPos >= mSearchList.size() ||
bool(*mSearchList[mCurrSearchPos]) == false)
return 0.0;
Point3F pos;
(*mSearchList[mCurrSearchPos])->getWorldBox().getCenter(&pos);
return (pos - mSearchReferencePoint).len();
}
F32 Container::containerSearchCurrRadiusDist()
{
AssertFatal(this == &gServerContainer, "Abort. Searches only allowed on server container");
AssertFatal(mCurrSearchPos != -1, "Error, must call containerSearchNext before containerSearchCurrDist");
if (mCurrSearchPos == -1 || mCurrSearchPos >= mSearchList.size() ||
bool(*mSearchList[mCurrSearchPos]) == false)
return 0.0;
Point3F pos;
(*mSearchList[mCurrSearchPos])->getWorldBox().getCenter(&pos);
F32 dist = (pos - mSearchReferencePoint).len();
F32 min = (*mSearchList[mCurrSearchPos])->getWorldBox().len_x();
if ((*mSearchList[mCurrSearchPos])->getWorldBox().len_y() < min)
min = (*mSearchList[mCurrSearchPos])->getWorldBox().len_y();
if ((*mSearchList[mCurrSearchPos])->getWorldBox().len_z() < min)
min = (*mSearchList[mCurrSearchPos])->getWorldBox().len_z();
dist -= min;
if (dist < 0)
dist = 0;
return dist;
}
//----------------------------------------------------------------------------
void SimpleQueryList::insertionCallback(SceneObject* obj, void *key)
{
SimpleQueryList* pList = (SimpleQueryList*)key;
pList->insertObject(obj);
}
Point3F SceneObject::getPosition() const
{
Point3F pos;
mObjToWorld.getColumn(3, &pos);
return pos;
}
Point3F SceneObject::getRenderPosition() const
{
Point3F pos;
mRenderObjToWorld.getColumn(3, &pos);
return pos;
}
void SceneObject::setPosition(const Point3F &pos)
{
MatrixF xform = mObjToWorld;
xform.setColumn(3, pos);
setTransform(xform);
}
//--------------------------------------------------------------------------
SceneObject::LightingInfo::LightingInfo()
{
mUseInfo = false;
mDirty = false;
mHasLastColor = false;
// set the colors to half white for invalid surfaces and all...
mDefaultColor.set(0.5f, 0.5f, 0.5f);
//mAlarmColor.set(0.5f, 0.5f, 0.5f);
mLastColor.set(0.5f, 0.5f, 0.5f);
mLastTime = 0;
}
//--------------------------------------------------------------------------
// Lighting update: not used directly by sceneobject...
// - if an interior, which contains this object, moves then this value will be incorrect
bool SceneObject::getLightingAmbientColor(ColorF * col)
{
AssertFatal(col!=NULL, "SceneObject::getLightingAmbientColor: invalid color ptr");
const F32 cRayLength = 100.f; // down/up
const F32 cTerrainRayLength = 10.f; // height above terrain for no ambient
const F32 cColorStep = 0.2f; // amount to add per 100ms
PROFILE_START(GetLightingAmbientColor);
// query a new value?
if(mLightingInfo.mDirty)
{
mLightingInfo.mDirty = false;
Point3F pos;
getRenderWorldBox().getCenter(&pos);
// check if shadowed:
disableCollision();
mLightingInfo.mUseInfo = false;
//mLightingInfo.mInterior = 0;
// Ambient light is determined by the surface we are standing on.
RayInfo collision;
if (gClientContainer.castRay(pos, Point3F(pos.x, pos.y, pos.z - cRayLength),
InteriorObjectType | TerrainObjectType, &collision))
{
// Standing on an interior object
if (InteriorInstance * instance = dynamic_cast<InteriorInstance*>(collision.object))
{
if (collision.face != -1)
{
// determine the color of this point...
Interior * interior = instance->getDetailLevel(0);
AssertFatal(interior!=NULL, "SceneObject::getLightingAmbientColor: invalid interior");
AssertFatal(collision.face < interior->getSurfaceCount(), "SceneObject::getLightingAmbientColor: invalid surface");
const Interior::Surface & surface = interior->getSurface(collision.face);
// get the render order
U32 currIndex = 0;
U32 last = 2;
static U32 renderIndices[512];
while(last < surface.windingCount)
{
// first
renderIndices[currIndex++] = last - 2;
renderIndices[currIndex++] = last - 1;
renderIndices[currIndex++] = last - 0;
last++;
if(last == surface.windingCount)
break;
// second
renderIndices[currIndex++] = last - 1;
renderIndices[currIndex++] = last - 2;
renderIndices[currIndex++] = last - 0;
last++;
}
// get the winding indices, the src indices and the points
static Point3F points[512];
static U32 srcIndices[512];
for(U32 i = 0; i < currIndex; i++)
{
srcIndices[i] = surface.windingStart + renderIndices[i];
renderIndices[i] = interior->getWinding(srcIndices[i]);
points[i] = interior->getPoint(renderIndices[i]);
}
// project the collision point into object space
instance->getWorldTransform().mulP(collision.point);
collision.point.convolveInverse(instance->getScale());
PlaneF plane = interior->getFlippedPlane(surface.planeIndex);
// walk the tri's to find the one under collision point
S32 insideOffset = -1;
for(U32 offset = 0; offset < currIndex; offset += 3)
{
bool inside = true;
for(U32 j = 0; (j < 3) && inside; j++)
{
U32 k = (j+1) % 3;
VectorF vec1 = points[offset + k] - points[offset + j];
VectorF vec2 = collision.point - points[offset + j];
Point3F cross;
mCross(vec2, vec1, &cross);
if(mDot(plane, cross) < 0.f)
inside = false;
}
if(inside)
{
insideOffset = offset;
break;
}
}
if(insideOffset != -1)
{
// box map the surface:
F32 max = 0.f;
S32 index = -1;
F32 * pNormal = (F32*)plane;
// n, s, t:
static U32 BoxIndices[][3] = {
{ 0, 1, 2 },
{ 1, 0, 2 },
{ 2, 0, 1 },
};
for(U32 i = 0; i < 3; i++)
{
if(mFabs(pNormal[i]) >= mFabs(max))
{
max = pNormal[i];
index = i;
}
}
AssertFatal(index >= 0, "Failed to get best normal");
ColorF color(0.f, 0.f, 0.f, 1.f);
// grab the points
Point3F pnts[3];
for(U32 j = 0; j < 3; j++)
pnts[j] = points[insideOffset + j];
// project the collision point
F32 * pColPnt = const_cast<F32*>((const F32*)collision.point);
pColPnt[BoxIndices[index][0]] = 0.f;
// calculate both colors (default/alarm):
for(U32 i = 0; i < 1; i++)
{
Vector<ColorI> * vertexColors = 0;
ColorF * setColor = 0;
// default/alarm pass:
if(i == 0)
{
vertexColors = instance->getVertexColorsNormal(0);
setColor = &mLightingInfo.mDefaultColor;
}
/*else if(interior->hasAlarmState())
{
// only need the interior handle if it has an alarm state
//mLightingInfo.mInterior = instance;
vertexColors = instance->getVertexColorsAlarm(0);
setColor = &mLightingInfo.mAlarmColor;
}
else
{
mLightingInfo.mAlarmColor = mLightingInfo.mDefaultColor;
break;
}*/
setColor->set(0.f, 0.f, 0.f);
// grab the source colors
ColorF srcColors[3];
if(!vertexColors->size())
{
for(U32 j = 0; j < 3; j++)
srcColors[j].set(1,1,1);
}
else
{
for(U32 j = 0; j < 3; j++)
srcColors[j] = (*vertexColors)[srcIndices[insideOffset + j]];
}
// handle each component
F32 * pDestColor = const_cast<F32*>(((const F32*)*setColor));
for(U32 j = 0; j < 3; j++)
{
// project onto a color plane
for(U32 k = 0; k < 3; k++)
{
F32 * pPnt = const_cast<F32*>((const F32*)pnts[k]);
F32 * pSrcCol = const_cast<F32*>((const F32*)srcColors[k]);
pPnt[BoxIndices[index][0]] = pSrcCol[j];
}
// create a plane from the projected points
PlaneF colPlane(pnts[0], pnts[1], pnts[2]);
// determine the color value... (distance to plane is 0)
F32 * pColPlane = const_cast<F32*>((const F32 *)colPlane);
U32 * pBoxIndices = BoxIndices[index];
F32 val = (pColPlane[pBoxIndices[1]] * pColPnt[pBoxIndices[1]] +
pColPlane[pBoxIndices[2]] * pColPnt[pBoxIndices[2]] + colPlane.d) /
(-pColPlane[pBoxIndices[0]]);
pDestColor[j] = mClampF(val, 0.f, 1.f);
}
}
}
// use info if collided
//mLightingInfo.mLightSource = LightingInfo::Interior;
mLightingInfo.mUseInfo = true;
}
}
else
{
// Must be a terrain object
TerrainBlock * terrain = dynamic_cast<TerrainBlock*>(collision.object);
AssertFatal(terrain != 0,"Internal error: incorrect object type in ambient lighting");
// get the position of the point on the terrain
const MatrixF & mat = terrain->getTransform();
Point3F origin;
mat.getColumn(3, &origin);
F32 lmapSize = F32(terrain->getSquareSize()) * (F32(TerrainBlock::BlockSize) / F32(TerrainBlock::LightmapSize));
U32 lmapMask = TerrainBlock::LightmapSize - 1;
// grab the lightmap colors...
const F32 scale = 1.0f / 31.0f;
GBitmap *lightmap = terrain->lightMap;
AssertFatal(lightmap!=NULL, "SceneObject::getAmbientLightingColor: no lightmap on terrain");
AssertFatal(lightmap->getFormat() == GBitmap::RGB5551, "SceneObject::getAmbientLightingColor: terrain lightmap is not 5551");
Vector<posinfo> posinfolist;
posinfolist.increment(4);
for(U32 l=0; l<4; l++)
{
posinfo &info = posinfolist[l];
Point2F objspace = Point2F((collision.point.x - origin.x), (collision.point.y - origin.y));
if(l & 0x1)
objspace.x += lmapSize;
if(l & 0x2)
objspace.y += lmapSize;
info.lexelspace.x = (S32)mFloor((objspace.x) / lmapSize);
info.lexelspace.y = (S32)mFloor((objspace.y) / lmapSize);
info.lexelspace.x &= lmapMask;
info.lexelspace.y &= lmapMask;
ColorI templexel;
AssertFatal((lightmap->getWidth() > info.lexelspace.x) && (lightmap->getHeight() > info.lexelspace.y), "SceneObject::getAmbientLightingColor: invalid lightmap coords");
if(!lightmap->getColorBGRA(info.lexelspace.x, info.lexelspace.y, templexel))
AssertFatal((false), "Error retrieving terrain lighting data.");
// convert the color...
info.lexel.red = F32(templexel.red) * scale;
info.lexel.green = F32(templexel.green) * scale;
info.lexel.blue = F32(templexel.blue) * scale;
info.lexel.clamp();
}
posinfo &postl = posinfolist[0];
posinfo &postr = posinfolist[1];
posinfo &posbl = posinfolist[2];
posinfo &posbr = posinfolist[3];
Point2F pos;
pos.x = (collision.point.x - origin.x) / lmapSize;
pos.y = (collision.point.y - origin.y) / lmapSize;
pos.x = pos.x - mFloor(pos.x);
pos.y = pos.y - mFloor(pos.y);
ColorF cola, colb, colc;
cola.interpolate(postl.lexel, postr.lexel, pos.x);
colb.interpolate(posbl.lexel, posbr.lexel, pos.x);
colc.interpolate(cola, colb, pos.y);
colc.clamp();
mLightingInfo.mDefaultColor = colc;
mLightingInfo.mUseInfo = true;
}
}
enableCollision();
}
PROFILE_END();
// has a value?
if(mLightingInfo.mUseInfo)
{
// currently in an interior which has an alarm state?
ColorF color;
/*if(bool(mLightingInfo.mInterior))
{
InteriorInstance * interior = static_cast<InteriorInstance*>(static_cast<SimObject*>(mLightingInfo.mInterior));
if(interior->inAlarmState())
color = mLightingInfo.mAlarmColor;
else
color = mLightingInfo.mDefaultColor;
}
else*/
color = mLightingInfo.mDefaultColor;
if(!receiveLMLighting)
color = ColorF(0.0f, 0.0f, 0.0f);
S32 time = Platform::getVirtualMilliseconds();
// has a previous color?
if(mLightingInfo.mHasLastColor)
{
// do each componant
F32 * pColor = const_cast<F32*>((const F32 *)color);
F32 * pLastColor = const_cast<F32*>((const F32 *)mLightingInfo.mLastColor);
// cColorStep is amount added per 100ms
F32 step = (F32(time - mLightingInfo.mLastTime) / 100.f) * cColorStep;
for(U32 i = 0; i < 3; i++)
{
if(pColor[i] > pLastColor[i])
pColor[i] = mClampF(pLastColor[i] + step, 0.f, pColor[i]);
else if(pColor[i] < pLastColor[i])
pColor[i] = mClampF(pLastColor[i] - step, pColor[i], 1.f);
}
}
mLightingInfo.mHasLastColor = true;
mLightingInfo.mLastColor = color;
mLightingInfo.mLastTime = time;
*col = color;
return(true);
}
else
{
mLightingInfo.mHasLastColor = false;
*col = mLightingInfo.mLastColor;
return(true);
}
return(false);
}
Point3F SceneObject::getVelocity() const
{
return Point3F(0, 0, 0);
}
void SceneObject::setVelocity(const Point3F &)
{
// derived objects should track velocity if they want...
}
void SceneObject::findLights(const char *name, NetConnection *con)
{
SimObject *object = Sim::findObject(name);
if(!object)
return;
SimGroup *group = dynamic_cast<SimGroup *>(object);
if(!group)
{
sgLightObject *light = dynamic_cast<sgLightObject*>(object);
if(!light)
return;
// its a light object...
S32 id = con->getGhostIndex(light);
if(id > -1)
lightIds.push_back(id);
}
else
{
// its a group object so get the contained light objects...
for(SimObject **obj = group->begin(); obj != group->end(); obj++)
{
sgLightObject *light = dynamic_cast<sgLightObject*>(*obj);
if(!light)
continue;
S32 id = con->getGhostIndex(light);
if(id > -1)
lightIds.push_back(id);
}
}
}
/// converts lightGroupName into a list of sgUniversalStaticLight objects.
void SceneObject::findLightGroup(NetConnection *con)
{
AssertFatal((isServerObject()), "Client object called 'findLightGroup'.");
lightIds.clear();
if(lightGroupName && (dStrlen(lightGroupName) > 0))
{
char *lightname = new char[dStrlen(lightGroupName) + 1];
dStrcpy(lightname, lightGroupName);
char *currentname = lightname;
char *delimiter = NULL;
while((delimiter = dStrchr(currentname, ';')) != NULL)
{
delimiter[0] = 0;
findLights(currentname, con);
currentname = &delimiter[1];
}
findLights(currentname, con);
delete[] lightname;
}
}