tge/engine/collision/extrudedPolyList.cc
2025-02-17 23:17:30 -06:00

493 lines
14 KiB
C++
Executable File

//-----------------------------------------------------------------------------
// Torque Game Engine
// Copyright (C) GarageGames.com, Inc.
//-----------------------------------------------------------------------------
#include "platform/platform.h"
#include "dgl/dgl.h"
#include "math/mMath.h"
#include "console/console.h"
#include "collision/extrudedPolyList.h"
#include "collision/polyhedron.h"
#include "collision/collision.h"
const F32 sgFrontEpsilon = 0.01;
//----------------------------------------------------------------------------
// use table for U64 shifts of the form: 1 << N
// because compiler makes it a function call if done directly...
U32 U32leftShift[33] =
{
U32(1) << 0,
U32(1) << 1,
U32(1) << 2,
U32(1) << 3,
U32(1) << 4,
U32(1) << 5,
U32(1) << 6,
U32(1) << 7,
U32(1) << 8,
U32(1) << 9,
U32(1) << 10,
U32(1) << 11,
U32(1) << 12,
U32(1) << 13,
U32(1) << 14,
U32(1) << 15,
U32(1) << 16,
U32(1) << 17,
U32(1) << 18,
U32(1) << 19,
U32(1) << 20,
U32(1) << 21,
U32(1) << 22,
U32(1) << 23,
U32(1) << 24,
U32(1) << 25,
U32(1) << 26,
U32(1) << 27,
U32(1) << 28,
U32(1) << 29,
U32(1) << 30,
U32(1) << 31,
U32(0) // one more for good measure
};
// Minimum distance from a face
F32 ExtrudedPolyList::FaceEpsilon = 0.01;
// Value used to compare collision times
F32 ExtrudedPolyList::EqualEpsilon = 0.0001;
ExtrudedPolyList::ExtrudedPolyList()
{
VECTOR_SET_ASSOCIATION(mVertexList);
VECTOR_SET_ASSOCIATION(mIndexList);
VECTOR_SET_ASSOCIATION(mExtrudedList);
VECTOR_SET_ASSOCIATION(mPlaneList);
VECTOR_SET_ASSOCIATION(mPolyPlaneList);
mVelocity.set(0,0,0);
mIndexList.reserve(128);
mVertexList.reserve(64);
mPolyPlaneList.reserve(64);
mPlaneList.reserve(64);
mCollisionList = 0;
}
ExtrudedPolyList::~ExtrudedPolyList()
{
}
//----------------------------------------------------------------------------
bool ExtrudedPolyList::isEmpty() const
{
return mCollisionList->count == 0;
}
//----------------------------------------------------------------------------
void ExtrudedPolyList::extrude(const Polyhedron& pt, const VectorF& vector)
{
// Clear state
mIndexList.clear();
mVertexList.clear();
mPlaneList.clear();
mPolyPlaneList.clear();
mFaceShift = 0;
// Determine which faces will be extruded.
mExtrudedList.setSize(pt.planeList.size());
for (U32 f = 0; f < pt.planeList.size(); f++) {
const PlaneF& face = pt.planeList[f];
ExtrudedFace& eface = mExtrudedList[f];
F32 dot = mDot(face,vector);
eface.active = dot > EqualEpsilon;
if (eface.active) {
eface.faceShift = FaceEpsilon / dot;
eface.maxDistance = dot;
eface.plane = face;
eface.planeMask = U32leftShift[mPlaneList.size()]; // U64(1) << mPlaneList.size();
// Add the face as a plane to clip against.
mPlaneList.increment(2);
PlaneF* plane = mPlaneList.end() - 2;
plane[0] = plane[1] = face;
plane[0].invert();
}
}
// Produce extruded planes for bounding and internal edges
for (U32 e = 0; e < pt.edgeList.size(); e++) {
Polyhedron::Edge const& edge = pt.edgeList[e];
ExtrudedFace& ef1 = mExtrudedList[edge.face[0]];
ExtrudedFace& ef2 = mExtrudedList[edge.face[1]];
if (ef1.active || ef2.active) {
// Assumes that the edge points are clockwise
// for face[0].
const Point3F& p1 = pt.pointList[edge.vertex[1]];
const Point3F &p2 = pt.pointList[edge.vertex[0]];
Point3F p3 = p2 + vector;
mPlaneList.increment(2);
PlaneF* plane = mPlaneList.end() - 2;
plane[0].set(p3,p2,p1);
plane[1] = plane[0];
plane[1].invert();
U32 pmask = U32leftShift[mPlaneList.size()-2]; // U64(1) << (mPlaneList.size()-2)
ef1.planeMask |= pmask;
ef2.planeMask |= pmask << 1;
}
}
}
//----------------------------------------------------------------------------
void ExtrudedPolyList::setCollisionList(CollisionList* info)
{
mCollisionList = info;
mCollisionList->count = 0;
mCollisionList->t = 2;
}
//----------------------------------------------------------------------------
void ExtrudedPolyList::adjustCollisionTime()
{
// Called after all the polys have been added.
// There was a reason for doing it here instead of subtracting
// the face Epsilon (faceShift) when the closest point is calculated,
// but I can't remember what it is...
if (mCollisionList->count) {
mCollisionList->t -= mFaceShift;
if (mCollisionList->t > 1)
mCollisionList->t = 1;
else
if (mCollisionList->t < 0)
mCollisionList->t = 0;
}
}
//----------------------------------------------------------------------------
U32 ExtrudedPolyList::addPoint(const Point3F& p)
{
mVertexList.increment();
Vertex& v = mVertexList.last();
v.point.x = p.x * mScale.x;
v.point.y = p.y * mScale.y;
v.point.z = p.z * mScale.z;
mMatrix.mulP(v.point);
// Build the plane mask, planes come in pairs
v.mask = 0;
for (U32 i = 0; i < mPlaneList.size(); i += 2)
{
F32 dist = mPlaneList[i].distToPlane(v.point);
if (dist >= sgFrontEpsilon)
v.mask |= U32leftShift[i]; // U64(1) << i;
else
v.mask |= U32leftShift[i+1]; // U64(2) << i;
}
return mVertexList.size() - 1;
}
U32 ExtrudedPolyList::addPlane(const PlaneF& plane)
{
mPolyPlaneList.increment();
mPlaneTransformer.transform(plane, mPolyPlaneList.last());
return mPolyPlaneList.size() - 1;
}
//----------------------------------------------------------------------------
void ExtrudedPolyList::begin(U32 material, U32 /*surfaceKey*/)
{
mPoly.object = mCurrObject;
mPoly.material = material;
mIndexList.clear();
}
void ExtrudedPolyList::plane(U32 v1, U32 v2, U32 v3)
{
mPoly.plane.set(mVertexList[v1].point,
mVertexList[v2].point,
mVertexList[v3].point);
}
void ExtrudedPolyList::plane(const PlaneF& p)
{
mPlaneTransformer.transform(p, mPoly.plane);
}
void ExtrudedPolyList::plane(const U32 index)
{
AssertFatal(index < mPolyPlaneList.size(), "Out of bounds index!");
mPoly.plane = mPolyPlaneList[index];
}
const PlaneF& ExtrudedPolyList::getIndexedPlane(const U32 index)
{
AssertFatal(index < mPolyPlaneList.size(), "Out of bounds index!");
return mPolyPlaneList[index];
}
void ExtrudedPolyList::vertex(U32 vi)
{
mIndexList.push_back(vi);
}
void ExtrudedPolyList::end()
{
// Anything facing away from the mVelocity is rejected
if (mCollisionList->count >= CollisionList::MaxCollisions ||
mDot(mPoly.plane, mNormalVelocity) > 0)
return;
// Test the mPoly against the planes each extruded face.
U32 cFaceCount = 0;
ExtrudedFace* cFace[30];
bool cEdgeColl[30];
ExtrudedFace* face = mExtrudedList.begin();
ExtrudedFace* end = mExtrudedList.end();
for (; face != end; face++)
{
if (face->active && (face->faceDot = -mDot(face->plane,mPoly.plane)) > 0)
{
if (testPoly(*face)) {
cFace[cFaceCount] = face;
cEdgeColl[cFaceCount++] = false;
}
}
}
if (!cFaceCount)
{
face = mExtrudedList.begin();
end = mExtrudedList.end();
for (; face != end; face++)
{
if (face->active && (face->faceDot = -mDot(face->plane,mPoly.plane)) <= 0)
{
if (testPoly(*face)) {
cFace[cFaceCount] = face;
cEdgeColl[cFaceCount++] = true;
}
}
}
}
if (!cFaceCount)
return;
// Pick the best collision face
face = cFace[0];
bool edge = cEdgeColl[0];
for (U32 f = 1; f < cFaceCount; f++)
{
if (cFace[f]->faceDot > face->faceDot)
{
face = cFace[f];
edge = cEdgeColl[f];
}
}
// Add it to the collision list if it's better and/or equal
// to our current best.
if (face->time <= mCollisionList->t + EqualEpsilon) {
if (face->time < mCollisionList->t - EqualEpsilon) {
mFaceShift = face->faceShift;
mCollisionList->t = face->time;
mCollisionList->count = 0;
mCollisionList->maxHeight = face->height;
}
else {
if (face->height > mCollisionList->maxHeight)
mCollisionList->maxHeight = face->height;
if (face->faceShift > mFaceShift)
mFaceShift = face->faceShift;
}
Collision& collision = mCollisionList->collision[mCollisionList->count++];
collision.point = face->point;
collision.faceDot = face->faceDot;
collision.face = face - mExtrudedList.begin();
collision.object = mPoly.object;
collision.normal = mPoly.plane;
collision.material = mPoly.material;
}
}
//----------------------------------------------------------------------------
bool ExtrudedPolyList::testPoly(ExtrudedFace& face)
{
// Build intial inside/outside plane masks
U32 indexStart = 0;
U32 indexEnd = mIndexList.size();
U32 oVertexSize = mVertexList.size();
U32 oIndexSize = mIndexList.size();
U32 frontMask = 0,backMask = 0;
for (U32 i = indexStart; i < indexEnd; i++) {
U32 mask = mVertexList[mIndexList[i]].mask & face.planeMask;
frontMask |= mask;
backMask |= ~mask;
}
// Clip the mPoly against the planes that bound the face...
// Trivial accept if all the vertices are on the backsides of
// all the planes.
if (frontMask) {
// Trivial reject if any plane not crossed has all it's points
// on the front.
U32 crossMask = frontMask & backMask;
if (~crossMask & frontMask)
return false;
// Need to do some clipping
for (U32 p = 0; p < mPlaneList.size(); p++) {
U32 pmask = U32leftShift[p]; // U64(1) << p;
U32 newStart = mIndexList.size();
// Only test against this plane if we have something
// on both sides
if (face.planeMask & crossMask & pmask) {
U32 i1 = indexEnd - 1;
U32 mask1 = mVertexList[mIndexList[i1]].mask;
for (U32 i2 = indexStart; i2 < indexEnd; i2++) {
U32 mask2 = mVertexList[mIndexList[i2]].mask;
if ((mask1 ^ mask2) & pmask) {
//
mVertexList.increment();
VectorF& v1 = mVertexList[mIndexList[i1]].point;
VectorF& v2 = mVertexList[mIndexList[i2]].point;
VectorF vv = v2 - v1;
F32 t = -mPlaneList[p].distToPlane(v1) / mDot(mPlaneList[p],vv);
mIndexList.push_back(mVertexList.size() - 1);
Vertex& iv = mVertexList.last();
iv.point.x = v1.x + vv.x * t;
iv.point.y = v1.y + vv.y * t;
iv.point.z = v1.z + vv.z * t;
iv.mask = 0;
// Test against the remaining planes
for (U32 i = p + 1; i < mPlaneList.size(); i++) {
U32 mask = U32leftShift[i]; // U64(1) << i;
if (face.planeMask & mask &&
mPlaneList[i].distToPlane(iv.point) > 0) {
iv.mask = mask;
break;
}
}
}
if (!(mask2 & pmask)) {
U32 index = mIndexList[i2];
mIndexList.push_back(index);
}
mask1 = mask2;
i1 = i2;
}
// Check for degenerate
indexStart = newStart;
indexEnd = mIndexList.size();
if (mIndexList.size() - indexStart < 3) {
mVertexList.setSize(oVertexSize);
mIndexList.setSize(oIndexSize);
return false;
}
}
}
}
// Find closest point on the mPoly
Point3F bp;
F32 bd = 1E30;
F32 height = -1E30;
for (U32 b = indexStart; b < indexEnd; b++) {
Vertex& vertex = mVertexList[mIndexList[b]];
F32 dist = face.plane.distToPlane(vertex.point);
if (dist <= bd) {
bd = (dist < 0)? 0: dist;
bp = vertex.point;
}
// Since we don't clip against the back plane, we'll
// only include vertex heights that are within range.
if (vertex.point.z > height && dist < face.maxDistance)
height = vertex.point.z;
}
// Remove temporary data
mVertexList.setSize(oVertexSize);
mIndexList.setSize(oIndexSize);
// Add it to the collision list if it's better and/or equal
// to our current best.
if (bd < face.maxDistance + FaceEpsilon) {
face.time = bd / face.maxDistance;
face.height = height;
face.point = bp;
return true;
}
return false;
}
//----------------------------------------------------------------------------
void ExtrudedPolyList::render()
{
if (!mCollisionList)
return;
glBegin(GL_LINES);
glColor3f(1,1,0);
for (U32 d = 0; d < mCollisionList->count; d++) {
Collision& face = mCollisionList->collision[d];
Point3F ep = face.point;
ep += face.normal;
glVertex3fv(face.point);
glVertex3fv(ep);
}
glEnd();
}
//--------------------------------------------------------------------------
void ExtrudedPolyList::setVelocity(const VectorF& velocity)
{
mVelocity = velocity;
if (velocity.isZero() == false)
{
mNormalVelocity = velocity;
mNormalVelocity.normalize();
setInterestNormal(mNormalVelocity);
}
else
{
mNormalVelocity.set(0, 0, 0);
clearInterestNormal();
}
}