tge/engine/game/vehicles/vehicle.cc
2017-04-17 06:17:10 -06:00

1706 lines
54 KiB
C++
Executable File

//-----------------------------------------------------------------------------
// Torque Game Engine
// Copyright (C) GarageGames.com, Inc.
//-----------------------------------------------------------------------------
#include "game/vehicles/vehicle.h"
#include "platform/platform.h"
#include "dgl/dgl.h"
#include "game/game.h"
#include "math/mMath.h"
#include "console/simBase.h"
#include "console/console.h"
#include "console/consoleTypes.h"
#include "collision/clippedPolyList.h"
#include "collision/planeExtractor.h"
#include "game/moveManager.h"
#include "core/bitStream.h"
#include "core/dnet.h"
#include "game/gameConnection.h"
#include "ts/tsShapeInstance.h"
#include "game/fx/particleEngine.h"
#include "audio/audioDataBlock.h"
#include "math/mathIO.h"
#include "sceneGraph/sceneState.h"
#include "terrain/terrData.h"
#include "dgl/materialPropertyMap.h"
#include "game/trigger.h"
#include "game/item.h"
//----------------------------------------------------------------------------
namespace {
const U32 sMoveRetryCount = 3;
// Client prediction
const S32 sMaxWarpTicks = 3; // Max warp duration in ticks
const S32 sMaxPredictionTicks = 30; // Number of ticks to predict
const F32 sVehicleGravity = -20;
// Physics and collision constants
static F32 sRestTol = 0.5; // % of gravity energy to be at rest
static int sRestCount = 10; // Consecutive ticks before comming to rest
} // namespace {}
// Trigger objects that are not normally collided with.
static U32 sTriggerMask = ItemObjectType |
TriggerObjectType |
CorpseObjectType;
IMPLEMENT_CONOBJECT(VehicleData);
//----------------------------------------------------------------------------
VehicleData::VehicleData()
{
shadowEnable = true;
shadowCanMove = true;
shadowCanAnimate = true;
body.friction = 0;
body.restitution = 1;
minImpactSpeed = 25;
softImpactSpeed = 25;
hardImpactSpeed = 50;
minRollSpeed = 0;
maxSteeringAngle = 0.785; // 45 deg.
cameraRoll = true;
cameraLag = 0;
cameraDecay = 0;
cameraOffset = 0;
minDrag = 0;
maxDrag = 0;
integration = 1;
collisionTol = 0.1;
contactTol = 0.1;
massCenter.set(0,0,0);
massBox.set(0,0,0);
drag = 0.7;
density = 4;
jetForce = 500;
jetEnergyDrain = 0.8;
minJetEnergy = 1;
for (S32 i = 0; i < Body::MaxSounds; i++)
body.sound[i] = 0;
dustEmitter = NULL;
dustID = 0;
triggerDustHeight = 3.0;
dustHeight = 1.0;
dMemset( damageEmitterList, 0, sizeof( damageEmitterList ) );
dMemset( damageEmitterIDList, 0, sizeof( damageEmitterIDList ) );
dMemset( damageLevelTolerance, 0, sizeof( damageLevelTolerance ) );
dMemset( splashEmitterList, 0, sizeof( splashEmitterList ) );
dMemset( splashEmitterIDList, 0, sizeof( splashEmitterIDList ) );
numDmgEmitterAreas = 0;
splashFreqMod = 300.0;
splashVelEpsilon = 0.50;
exitSplashSoundVel = 2.0;
softSplashSoundVel = 1.0;
medSplashSoundVel = 2.0;
hardSplashSoundVel = 3.0;
genericShadowLevel = Vehicle_GenericShadowLevel;
noShadowLevel = Vehicle_NoShadowLevel;
dMemset(waterSound, 0, sizeof(waterSound));
collDamageThresholdVel = 20;
collDamageMultiplier = 0.05;
}
//----------------------------------------------------------------------------
bool VehicleData::preload(bool server, char errorBuffer[256])
{
if (!Parent::preload(server, errorBuffer))
return false;
// Resolve objects transmitted from server
if (!server) {
for (S32 i = 0; i < Body::MaxSounds; i++)
if (body.sound[i])
Sim::findObject(SimObjectId(body.sound[i]),body.sound[i]);
}
if( !dustEmitter && dustID != 0 )
{
if( !Sim::findObject( dustID, dustEmitter ) )
{
Con::errorf( ConsoleLogEntry::General, "VehicleData::preload Invalid packet, bad datablockId(dustEmitter): 0x%x", dustID );
}
}
U32 i;
for( i=0; i<VC_NUM_DAMAGE_EMITTERS; i++ )
{
if( !damageEmitterList[i] && damageEmitterIDList[i] != 0 )
{
if( !Sim::findObject( damageEmitterIDList[i], damageEmitterList[i] ) )
{
Con::errorf( ConsoleLogEntry::General, "VehicleData::preload Invalid packet, bad datablockId(damageEmitter): 0x%x", damageEmitterIDList[i] );
}
}
}
for( i=0; i<VC_NUM_SPLASH_EMITTERS; i++ )
{
if( !splashEmitterList[i] && splashEmitterIDList[i] != 0 )
{
if( !Sim::findObject( splashEmitterIDList[i], splashEmitterList[i] ) )
{
Con::errorf( ConsoleLogEntry::General, "VehicleData::preload Invalid packet, bad datablockId(splashEmitter): 0x%x", splashEmitterIDList[i] );
}
}
}
return true;
}
//----------------------------------------------------------------------------
void VehicleData::packData(BitStream* stream)
{
S32 i;
Parent::packData(stream);
stream->write(body.restitution);
stream->write(body.friction);
for (i = 0; i < Body::MaxSounds; i++)
if (stream->writeFlag(body.sound[i]))
stream->writeRangedU32(packed? SimObjectId(body.sound[i]):
body.sound[i]->getId(),DataBlockObjectIdFirst,
DataBlockObjectIdLast);
stream->write(minImpactSpeed);
stream->write(softImpactSpeed);
stream->write(hardImpactSpeed);
stream->write(minRollSpeed);
stream->write(maxSteeringAngle);
stream->write(maxDrag);
stream->write(minDrag);
stream->write(integration);
stream->write(collisionTol);
stream->write(contactTol);
mathWrite(*stream,massCenter);
mathWrite(*stream,massBox);
stream->write(jetForce);
stream->write(jetEnergyDrain);
stream->write(minJetEnergy);
stream->writeFlag(cameraRoll);
stream->write(cameraLag);
stream->write(cameraDecay);
stream->write(cameraOffset);
stream->write( triggerDustHeight );
stream->write( dustHeight );
stream->write( numDmgEmitterAreas );
stream->write(exitSplashSoundVel);
stream->write(softSplashSoundVel);
stream->write(medSplashSoundVel);
stream->write(hardSplashSoundVel);
// write the water sound profiles
for(i = 0; i < MaxSounds; i++)
if(stream->writeFlag(waterSound[i]))
stream->writeRangedU32(waterSound[i]->getId(), DataBlockObjectIdFirst, DataBlockObjectIdLast);
if (stream->writeFlag( dustEmitter ))
{
stream->writeRangedU32( dustEmitter->getId(), DataBlockObjectIdFirst, DataBlockObjectIdLast );
}
for (i = 0; i < VC_NUM_DAMAGE_EMITTERS; i++)
{
if( stream->writeFlag( damageEmitterList[i] != NULL ) )
{
stream->writeRangedU32( damageEmitterList[i]->getId(), DataBlockObjectIdFirst, DataBlockObjectIdLast );
}
}
for (i = 0; i < VC_NUM_SPLASH_EMITTERS; i++)
{
if( stream->writeFlag( splashEmitterList[i] != NULL ) )
{
stream->writeRangedU32( splashEmitterList[i]->getId(), DataBlockObjectIdFirst, DataBlockObjectIdLast );
}
}
for (int j = 0; j < VC_NUM_DAMAGE_EMITTER_AREAS; j++)
{
stream->write( damageEmitterOffset[j].x );
stream->write( damageEmitterOffset[j].y );
stream->write( damageEmitterOffset[j].z );
}
for (int k = 0; k < VC_NUM_DAMAGE_LEVELS; k++)
{
stream->write( damageLevelTolerance[k] );
}
stream->write(splashFreqMod);
stream->write(splashVelEpsilon);
stream->write(collDamageThresholdVel);
stream->write(collDamageMultiplier);
}
void VehicleData::unpackData(BitStream* stream)
{
Parent::unpackData(stream);
stream->read(&body.restitution);
stream->read(&body.friction);
S32 i;
for (i = 0; i < Body::MaxSounds; i++) {
body.sound[i] = NULL;
if (stream->readFlag())
body.sound[i] = (AudioProfile*)stream->readRangedU32(DataBlockObjectIdFirst,
DataBlockObjectIdLast);
}
stream->read(&minImpactSpeed);
stream->read(&softImpactSpeed);
stream->read(&hardImpactSpeed);
stream->read(&minRollSpeed);
stream->read(&maxSteeringAngle);
stream->read(&maxDrag);
stream->read(&minDrag);
stream->read(&integration);
stream->read(&collisionTol);
stream->read(&contactTol);
mathRead(*stream,&massCenter);
mathRead(*stream,&massBox);
stream->read(&jetForce);
stream->read(&jetEnergyDrain);
stream->read(&minJetEnergy);
cameraRoll = stream->readFlag();
stream->read(&cameraLag);
stream->read(&cameraDecay);
stream->read(&cameraOffset);
stream->read( &triggerDustHeight );
stream->read( &dustHeight );
stream->read( &numDmgEmitterAreas );
stream->read(&exitSplashSoundVel);
stream->read(&softSplashSoundVel);
stream->read(&medSplashSoundVel);
stream->read(&hardSplashSoundVel);
// write the water sound profiles
for(i = 0; i < MaxSounds; i++)
if(stream->readFlag())
{
U32 id = stream->readRangedU32(DataBlockObjectIdFirst, DataBlockObjectIdLast);
waterSound[i] = dynamic_cast<AudioProfile*>( Sim::findObject(id) );
}
if( stream->readFlag() )
{
dustID = (S32) stream->readRangedU32(DataBlockObjectIdFirst, DataBlockObjectIdLast);
}
for (i = 0; i < VC_NUM_DAMAGE_EMITTERS; i++)
{
if( stream->readFlag() )
{
damageEmitterIDList[i] = stream->readRangedU32( DataBlockObjectIdFirst, DataBlockObjectIdLast );
}
}
for (i = 0; i < VC_NUM_SPLASH_EMITTERS; i++)
{
if( stream->readFlag() )
{
splashEmitterIDList[i] = stream->readRangedU32( DataBlockObjectIdFirst, DataBlockObjectIdLast );
}
}
for( int j=0; j<VC_NUM_DAMAGE_EMITTER_AREAS; j++ )
{
stream->read( &damageEmitterOffset[j].x );
stream->read( &damageEmitterOffset[j].y );
stream->read( &damageEmitterOffset[j].z );
}
for( int k=0; k<VC_NUM_DAMAGE_LEVELS; k++ )
{
stream->read( &damageLevelTolerance[k] );
}
stream->read(&splashFreqMod);
stream->read(&splashVelEpsilon);
stream->read(&collDamageThresholdVel);
stream->read(&collDamageMultiplier);
}
//----------------------------------------------------------------------------
void VehicleData::initPersistFields()
{
Parent::initPersistFields();
addField("jetForce", TypeF32, Offset(jetForce, VehicleData));
addField("jetEnergyDrain", TypeF32, Offset(jetEnergyDrain, VehicleData));
addField("minJetEnergy", TypeF32, Offset(minJetEnergy, VehicleData));
addField("massCenter", TypePoint3F, Offset(massCenter, VehicleData));
addField("massBox", TypePoint3F, Offset(massBox, VehicleData));
addField("bodyRestitution", TypeF32, Offset(body.restitution, VehicleData));
addField("bodyFriction", TypeF32, Offset(body.friction, VehicleData));
addField("softImpactSound", TypeAudioProfilePtr, Offset(body.sound[Body::SoftImpactSound], VehicleData));
addField("hardImpactSound", TypeAudioProfilePtr, Offset(body.sound[Body::HardImpactSound], VehicleData));
addField("minImpactSpeed", TypeF32, Offset(minImpactSpeed, VehicleData));
addField("softImpactSpeed", TypeF32, Offset(softImpactSpeed, VehicleData));
addField("hardImpactSpeed", TypeF32, Offset(hardImpactSpeed, VehicleData));
addField("minRollSpeed", TypeF32, Offset(minRollSpeed, VehicleData));
addField("maxSteeringAngle", TypeF32, Offset(maxSteeringAngle, VehicleData));
addField("maxDrag", TypeF32, Offset(maxDrag, VehicleData));
addField("minDrag", TypeF32, Offset(minDrag, VehicleData));
addField("integration", TypeS32, Offset(integration, VehicleData));
addField("collisionTol", TypeF32, Offset(collisionTol, VehicleData));
addField("contactTol", TypeF32, Offset(contactTol, VehicleData));
addField("cameraRoll", TypeBool, Offset(cameraRoll, VehicleData));
addField("cameraLag", TypeF32, Offset(cameraLag, VehicleData));
addField("cameraDecay", TypeF32, Offset(cameraDecay, VehicleData));
addField("cameraOffset", TypeF32, Offset(cameraOffset, VehicleData));
addField("dustEmitter", TypeParticleEmitterDataPtr, Offset(dustEmitter, VehicleData));
addField("triggerDustHeight", TypeF32, Offset(triggerDustHeight, VehicleData));
addField("dustHeight", TypeF32, Offset(dustHeight, VehicleData));
addField("damageEmitter", TypeParticleEmitterDataPtr, Offset(damageEmitterList, VehicleData), VC_NUM_DAMAGE_EMITTERS);
addField("splashEmitter", TypeParticleEmitterDataPtr, Offset(splashEmitterList, VehicleData), VC_NUM_SPLASH_EMITTERS);
addField("damageEmitterOffset", TypePoint3F, Offset(damageEmitterOffset, VehicleData), VC_NUM_DAMAGE_EMITTER_AREAS);
addField("damageLevelTolerance", TypeF32, Offset(damageLevelTolerance, VehicleData), VC_NUM_DAMAGE_LEVELS);
addField("numDmgEmitterAreas", TypeF32, Offset(numDmgEmitterAreas, VehicleData));
addField("splashFreqMod", TypeF32, Offset(splashFreqMod, VehicleData));
addField("splashVelEpsilon", TypeF32, Offset(splashVelEpsilon, VehicleData));
addField("exitSplashSoundVelocity", TypeF32, Offset(exitSplashSoundVel, VehicleData));
addField("softSplashSoundVelocity", TypeF32, Offset(softSplashSoundVel, VehicleData));
addField("mediumSplashSoundVelocity", TypeF32, Offset(medSplashSoundVel, VehicleData));
addField("hardSplashSoundVelocity", TypeF32, Offset(hardSplashSoundVel, VehicleData));
addField("exitingWater", TypeAudioProfilePtr, Offset(waterSound[ExitWater], VehicleData));
addField("impactWaterEasy", TypeAudioProfilePtr, Offset(waterSound[ImpactSoft], VehicleData));
addField("impactWaterMedium", TypeAudioProfilePtr, Offset(waterSound[ImpactMedium], VehicleData));
addField("impactWaterHard", TypeAudioProfilePtr, Offset(waterSound[ImpactHard], VehicleData));
addField("waterWakeSound", TypeAudioProfilePtr, Offset(waterSound[Wake], VehicleData));
addField("collDamageThresholdVel", TypeF32, Offset(collDamageThresholdVel, VehicleData));
addField("collDamageMultiplier", TypeF32, Offset(collDamageMultiplier, VehicleData));
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
IMPLEMENT_CONOBJECT(Vehicle);
Vehicle::Vehicle()
{
mDataBlock = 0;
mTypeMask |= VehicleObjectType;
mDelta.pos = Point3F(0,0,0);
mDelta.posVec = Point3F(0,0,0);
mDelta.warpTicks = mDelta.warpCount = 0;
mDelta.dt = 1;
mDelta.move = NullMove;
mPredictionCount = 0;
mDelta.cameraOffset.set(0,0,0);
mDelta.cameraVec.set(0,0,0);
mDelta.cameraRot.set(0,0,0);
mDelta.cameraRotVec.set(0,0,0);
mRigid.linPosition.set(0, 0, 0);
mRigid.linVelocity.set(0, 0, 0);
mRigid.angPosition.identity();
mRigid.angVelocity.set(0, 0, 0);
mRigid.linMomentum.set(0, 0, 0);
mRigid.angMomentum.set(0, 0, 0);
mContacts.count = 0;
mSteering.set(0,0);
mThrottle = 0;
mJetting = false;
mCameraOffset.set(0,0,0);
dMemset( mDustEmitterList, 0, sizeof( mDustEmitterList ) );
dMemset( mDamageEmitterList, 0, sizeof( mDamageEmitterList ) );
dMemset( mSplashEmitterList, 0, sizeof( mSplashEmitterList ) );
mDisableMove = false;
restCount = 0;
inLiquid = false;
waterWakeHandle = 0;
}
U32 Vehicle::getCollisionMask()
{
AssertFatal(false, "Vehicle::getCollisionMask is pure virtual!");
return 0;
}
Point3F Vehicle::getVelocity() const
{
return mRigid.linVelocity;
}
//----------------------------------------------------------------------------
bool Vehicle::onAdd()
{
if (!Parent::onAdd())
return false;
// When loading from a mission script, the base SceneObject's transform
// will have been set and needs to be transfered to the rigid body.
mRigid.setTransform(mObjToWorld);
// Initialize interpolation vars.
mDelta.rot[1] = mDelta.rot[0] = mRigid.angPosition;
mDelta.pos = mRigid.linPosition;
mDelta.posVec = Point3F(0,0,0);
// Create Emitters on the client
if( isClientObject() )
{
if( mDataBlock->dustEmitter )
{
for( int i=0; i<VehicleData::VC_NUM_DUST_EMITTERS; i++ )
{
mDustEmitterList[i] = new ParticleEmitter;
mDustEmitterList[i]->onNewDataBlock( mDataBlock->dustEmitter );
if( !mDustEmitterList[i]->registerObject() )
{
Con::warnf( ConsoleLogEntry::General, "Could not register dust emitter for class: %s", mDataBlock->getName() );
delete mDustEmitterList[i];
mDustEmitterList[i] = NULL;
}
}
}
U32 j;
for( j=0; j<VehicleData::VC_NUM_DAMAGE_EMITTERS; j++ )
{
if( mDataBlock->damageEmitterList[j] )
{
mDamageEmitterList[j] = new ParticleEmitter;
mDamageEmitterList[j]->onNewDataBlock( mDataBlock->damageEmitterList[j] );
if( !mDamageEmitterList[j]->registerObject() )
{
Con::warnf( ConsoleLogEntry::General, "Could not register damage emitter for class: %s", mDataBlock->getName() );
delete mDamageEmitterList[j];
mDamageEmitterList[j] = NULL;
}
}
}
for( j=0; j<VehicleData::VC_NUM_SPLASH_EMITTERS; j++ )
{
if( mDataBlock->splashEmitterList[j] )
{
mSplashEmitterList[j] = new ParticleEmitter;
mSplashEmitterList[j]->onNewDataBlock( mDataBlock->splashEmitterList[j] );
if( !mSplashEmitterList[j]->registerObject() )
{
Con::warnf( ConsoleLogEntry::General, "Could not register splash emitter for class: %s", mDataBlock->getName() );
delete mSplashEmitterList[j];
mSplashEmitterList[j] = NULL;
}
}
}
}
// Create a new convex.
AssertFatal(mDataBlock->collisionDetails[0] != -1, "Error, a vehicle must have a collision-1 detail!");
mConvex.mObject = this;
mConvex.pShapeBase = this;
mConvex.hullId = 0;
mConvex.box = mObjBox;
mConvex.box.min.convolve(mObjScale);
mConvex.box.max.convolve(mObjScale);
mConvex.findNodeTransform();
return true;
}
void Vehicle::onRemove()
{
U32 i=0;
for( i=0; i<VehicleData::VC_NUM_DUST_EMITTERS; i++ )
{
if( mDustEmitterList[i] )
{
mDustEmitterList[i]->deleteWhenEmpty();
mDustEmitterList[i] = NULL;
}
}
for( i=0; i<VehicleData::VC_NUM_DAMAGE_EMITTERS; i++ )
{
if( mDamageEmitterList[i] )
{
mDamageEmitterList[i]->deleteWhenEmpty();
mDamageEmitterList[i] = NULL;
}
}
for( i=0; i<VehicleData::VC_NUM_SPLASH_EMITTERS; i++ )
{
if( mSplashEmitterList[i] )
{
mSplashEmitterList[i]->deleteWhenEmpty();
mSplashEmitterList[i] = NULL;
}
}
Parent::onRemove();
}
//----------------------------------------------------------------------------
void Vehicle::processTick(const Move* move)
{
Parent::processTick(move);
// if we're not being controlled by a client, let the
// AI sub-module get a chance at producing a move
Move aiMove(NullMove);
if(isServerObject() && getAIMove(&aiMove))
move = &aiMove;
// Warp to catch up to server
if (mDelta.warpCount < mDelta.warpTicks) {
mDelta.warpCount++;
// Set new pos.
mObjToWorld.getColumn(3,&mDelta.pos);
mDelta.pos += mDelta.warpOffset;
mDelta.rot[0] = mDelta.rot[1];
mDelta.rot[1].interpolate(mDelta.warpRot[0],mDelta.warpRot[1],F32(mDelta.warpCount)/mDelta.warpTicks);
setPosition(mDelta.pos,mDelta.rot[1]);
// Pos backstepping
mDelta.posVec.x = -mDelta.warpOffset.x;
mDelta.posVec.y = -mDelta.warpOffset.y;
mDelta.posVec.z = -mDelta.warpOffset.z;
}
else {
if (!move) {
if (isGhost()) {
// If we haven't run out of prediction time,
// predict using the last known move.
if (mPredictionCount-- <= 0)
return;
move = &mDelta.move;
}
else
move = &NullMove;
}
// Process input move
updateMove(move);
// Save current rigid state interpolation
mDelta.posVec = mRigid.linPosition;
mDelta.rot[0] = mRigid.angPosition;
// Update the physics based on the integration rate
S32 count = mDataBlock->integration;
updateWorkingCollisionSet(getCollisionMask());
for (U32 i = 0; i < count; i++)
updatePos(TickSec / count);
// Wrap up interpolation info
mDelta.pos = mRigid.linPosition;
mDelta.posVec -= mRigid.linPosition;
mDelta.rot[1] = mRigid.angPosition;
// Update container database
setPosition(mRigid.linPosition, mRigid.angPosition);
setMaskBits(PositionMask);
updateContainer();
}
}
void Vehicle::interpolateTick(F32 dt)
{
Parent::interpolateTick(dt);
if(dt == 0.0f)
setRenderPosition(mDelta.pos, mDelta.rot[1]);
else
{
QuatF rot;
rot.interpolate(mDelta.rot[1], mDelta.rot[0], dt);
Point3F pos = mDelta.pos + mDelta.posVec * dt;
setRenderPosition(pos,rot);
}
mDelta.dt = dt;
}
void Vehicle::advanceTime(F32 dt)
{
Parent::advanceTime(dt);
updateLiftoffDust( dt );
updateDamageSmoke( dt );
updateFroth(dt);
// Update 3rd person camera offset. Camera update is done
// here as it's a client side only animation.
mCameraOffset -=
(mCameraOffset * mDataBlock->cameraDecay +
mRigid.linVelocity * mDataBlock->cameraLag) * dt;
}
//----------------------------------------------------------------------------
bool Vehicle::onNewDataBlock(GameBaseData* dptr)
{
mDataBlock = dynamic_cast<VehicleData*>(dptr);
if (!mDataBlock || !Parent::onNewDataBlock(dptr))
return false;
// Update Rigid Info
mRigid.mass = mDataBlock->mass;
mRigid.oneOverMass = 1 / mRigid.mass;
mRigid.friction = mDataBlock->body.friction;
mRigid.restitution = mDataBlock->body.restitution;
mRigid.setCenterOfMass(mDataBlock->massCenter);
// Ignores massBox, just set sphere for now. Derived objects
// can set what they want.
mRigid.setObjectInertia();
return true;
}
//----------------------------------------------------------------------------
void Vehicle::getCameraParameters(F32 *min,F32* max,Point3F* off,MatrixF* rot)
{
*min = mDataBlock->cameraMinDist;
*max = mDataBlock->cameraMaxDist;
off->set(0,0,mDataBlock->cameraOffset);
rot->identity();
}
//----------------------------------------------------------------------------
void Vehicle::getCameraTransform(F32* pos,MatrixF* mat)
{
// Returns camera to world space transform
// Handles first person / third person camera position
if (isServerObject() && mShapeInstance)
mShapeInstance->animateNodeSubtrees(true);
if (*pos == 0) {
getRenderEyeTransform(mat);
return;
}
// Get the shape's camera parameters.
F32 min,max;
MatrixF rot;
Point3F offset;
getCameraParameters(&min,&max,&offset,&rot);
// Start with the current eye position
MatrixF eye;
getRenderEyeTransform(&eye);
// Build a transform that points along the eye axis
// but where the Z axis is always up.
if (mDataBlock->cameraRoll)
mat->mul(eye,rot);
else {
MatrixF cam(1);
VectorF x,y,z(0,0,1);
eye.getColumn(1, &y);
mCross(y, z, &x);
x.normalize();
mCross(x, y, &z);
z.normalize();
cam.setColumn(0,x);
cam.setColumn(1,y);
cam.setColumn(2,z);
mat->mul(cam,rot);
}
// Camera is positioned straight back along the eye's -Y axis.
// A ray is cast to make sure the camera doesn't go through
// anything solid.
VectorF vp,vec;
vp.x = vp.z = 0;
vp.y = -(max - min) * *pos;
eye.mulV(vp,&vec);
// Use the camera node as the starting position if it exists.
Point3F osp,sp;
if (mDataBlock->cameraNode != -1) {
mShapeInstance->mNodeTransforms[mDataBlock->cameraNode].getColumn(3,&osp);
getRenderTransform().mulP(osp,&sp);
}
else
eye.getColumn(3,&sp);
// Make sure we don't hit ourself...
disableCollision();
if (isMounted())
getObjectMount()->disableCollision();
// Cast the ray into the container database to see if we're going
// to hit anything.
RayInfo collision;
Point3F ep = sp + vec + offset + mCameraOffset;
if (mContainer->castRay(sp, ep,
~(WaterObjectType | GameBaseObjectType | DefaultObjectType),
&collision) == true) {
// Shift the collision point back a little to try and
// avoid clipping against the front camera plane.
F32 t = collision.t - (-mDot(vec, collision.normal) / vec.len()) * 0.1;
if (t > 0.0f)
ep = sp + offset + mCameraOffset + (vec * t);
else
eye.getColumn(3,&ep);
}
mat->setColumn(3,ep);
// Re-enable our collision.
if (isMounted())
getObjectMount()->enableCollision();
enableCollision();
}
//----------------------------------------------------------------------------
void Vehicle::getVelocity(const Point3F& r, Point3F* v)
{
mRigid.getVelocity(r, v);
}
void Vehicle::applyImpulse(const Point3F &pos, const Point3F &impulse)
{
Point3F r;
mRigid.getOriginVector(pos,&r);
mRigid.applyImpulse(r, impulse);
}
//----------------------------------------------------------------------------
void Vehicle::updateMove(const Move* move)
{
mDelta.move = *move;
// Image Triggers
if (mDamageState == Enabled) {
setImageTriggerState(0,move->trigger[0]);
setImageTriggerState(1,move->trigger[1]);
}
// Throttle
if(!mDisableMove)
mThrottle = move->y;
// Steering
if (move != &NullMove) {
F32 y = move->yaw;
mSteering.x = mClampF(mSteering.x + y,-mDataBlock->maxSteeringAngle,
mDataBlock->maxSteeringAngle);
F32 p = move->pitch;
mSteering.y = mClampF(mSteering.y + p,-mDataBlock->maxSteeringAngle,
mDataBlock->maxSteeringAngle);
}
else {
mSteering.x = 0;
mSteering.y = 0;
}
// Jetting flag
if (move->trigger[3]) {
if (!mJetting && getEnergyLevel() >= mDataBlock->minJetEnergy)
mJetting = true;
if (mJetting) {
F32 newEnergy = getEnergyLevel() - mDataBlock->jetEnergyDrain;
if (newEnergy < 0) {
newEnergy = 0;
mJetting = false;
}
setEnergyLevel(newEnergy);
}
}
else
mJetting = false;
}
//----------------------------------------------------------------------------
void Vehicle::setPosition(const Point3F& pos,const QuatF& rot)
{
MatrixF mat;
rot.setMatrix(&mat);
mat.setColumn(3,pos);
Parent::setTransform(mat);
}
void Vehicle::setRenderPosition(const Point3F& pos, const QuatF& rot)
{
MatrixF mat;
rot.setMatrix(&mat);
mat.setColumn(3,pos);
Parent::setRenderTransform(mat);
}
void Vehicle::setTransform(const MatrixF& newMat)
{
mRigid.setTransform(newMat);
Parent::setTransform(newMat);
mRigid.atRest = false;
mContacts.count = 0;
}
//-----------------------------------------------------------------------------
void Vehicle::disableCollision()
{
Parent::disableCollision();
for (ShapeBase* ptr = getMountList(); ptr; ptr = ptr->getMountLink())
ptr->disableCollision();
}
void Vehicle::enableCollision()
{
Parent::enableCollision();
for (ShapeBase* ptr = getMountList(); ptr; ptr = ptr->getMountLink())
ptr->enableCollision();
}
//----------------------------------------------------------------------------
/** Update the physics
*/
void Vehicle::updatePos(F32 dt)
{
Point3F origVelocity = mRigid.linVelocity;
// Update internal forces acting on the body.
mRigid.clearForces();
updateForces(dt);
// Update collision information based on our current pos.
bool collided = false;
if (!mRigid.atRest) {
collided = updateCollision(dt);
// Now that all the forces have been processed, lets
// see if we're at rest. Basically, if the kinetic energy of
// the vehicles is less than some percentage of the energy added
// by gravity for a short period, we're considered at rest.
// This should really be part of the rigid class...
if (mCollisionList.count) {
F32 k = mRigid.getKineticEnergy();
F32 G = sVehicleGravity * dt;
F32 Kg = 0.5 * mRigid.mass * G * G;
if (k < sRestTol * Kg && ++restCount > sRestCount)
mRigid.setAtRest();
}
else
restCount = 0;
}
// Integrate forward
if (!mRigid.atRest)
mRigid.integrate(dt);
// Deal with client and server scripting, sounds, etc.
if (isServerObject()) {
// Check triggers and other objects that we normally don't
// collide with. This function must be called before notifyCollision
// as it will queue collision.
checkTriggers();
// Invoke the onCollision notify callback for all the objects
// we've just hit.
notifyCollision();
// Server side impact script callback
if (collided) {
VectorF collVec = mRigid.linVelocity - origVelocity;
F32 collSpeed = collVec.len();
if (collSpeed > mDataBlock->minImpactSpeed)
onImpact(collVec);
}
// Water script callbacks
if (!inLiquid && mWaterCoverage != 0.0f) {
Con::executef(mDataBlock,4,"onEnterLiquid",scriptThis(), Con::getFloatArg(mWaterCoverage), Con::getIntArg(mLiquidType));
inLiquid = true;
}
else if (inLiquid && mWaterCoverage == 0.0f) {
Con::executef(mDataBlock,3,"onLeaveLiquid",scriptThis(), Con::getIntArg(mLiquidType));
inLiquid = false;
}
}
else {
// Play impact sounds on the client.
if (collided) {
F32 collSpeed = (mRigid.linVelocity - origVelocity).len();
S32 impactSound = -1;
if (collSpeed >= mDataBlock->hardImpactSpeed)
impactSound = VehicleData::Body::HardImpactSound;
else
if (collSpeed >= mDataBlock->softImpactSpeed)
impactSound = VehicleData::Body::SoftImpactSound;
if (impactSound != -1 && mDataBlock->body.sound[impactSound] != NULL)
alxPlay(mDataBlock->body.sound[impactSound], &getTransform());
}
// Water volume sounds
F32 vSpeed = getVelocity().len();
if (!inLiquid && mWaterCoverage >= 0.8f) {
if (vSpeed >= mDataBlock->hardSplashSoundVel)
alxPlay(mDataBlock->waterSound[VehicleData::ImpactHard], &getTransform());
else
if (vSpeed >= mDataBlock->medSplashSoundVel)
alxPlay(mDataBlock->waterSound[VehicleData::ImpactMedium], &getTransform());
else
if (vSpeed >= mDataBlock->softSplashSoundVel)
alxPlay(mDataBlock->waterSound[VehicleData::ImpactSoft], &getTransform());
inLiquid = true;
}
else
if(inLiquid && mWaterCoverage < 0.8f) {
if (vSpeed >= mDataBlock->exitSplashSoundVel)
alxPlay(mDataBlock->waterSound[VehicleData::ExitWater], &getTransform());
inLiquid = false;
}
}
}
//----------------------------------------------------------------------------
void Vehicle::updateForces(F32 /*dt*/)
{
// Nothing here.
}
//-----------------------------------------------------------------------------
/** Update collision information
Update the convex state and check for collisions. If the object is in
collision, impact and contact forces are generated.
*/
bool Vehicle::updateCollision(F32 dt)
{
// Update collision information
MatrixF mat,cmat;
mConvex.transform = &mat;
mRigid.getTransform(&mat);
cmat = mConvex.getTransform();
mCollisionList.count = 0;
CollisionState *state = mConvex.findClosestState(cmat, getScale(), mDataBlock->collisionTol);
if (state && state->dist <= mDataBlock->collisionTol) {
//resolveDisplacement(ns,state,dt);
mConvex.getCollisionInfo(cmat, getScale(), &mCollisionList, mDataBlock->collisionTol);
}
// Resolve collisions
bool collided = resolveCollision(mRigid,mCollisionList);
resolveContacts(mRigid,mCollisionList,dt);
return collided;
}
//----------------------------------------------------------------------------
/** Resolve collision impacts
Handle collision impacts, as opposed to contacts. Impulses are calculated based
on standard collision resolution formulas.
*/
bool Vehicle::resolveCollision(Rigid& ns,CollisionList& cList)
{
// Apply impulses to resolve collision
bool colliding, collided = false;
do {
colliding = false;
for (S32 i = 0; i < cList.count; i++) {
Collision& c = cList.collision[i];
if (c.distance < mDataBlock->collisionTol) {
// Velocity into surface
Point3F v,r;
ns.getOriginVector(c.point,&r);
ns.getVelocity(r,&v);
F32 vn = mDot(v,c.normal);
// Only interested in velocities greater than sContactTol,
// velocities less than that will be dealt with as contacts
// "constraints".
if (vn < -mDataBlock->contactTol) {
// Apply impulses to the rigid body to keep it from
// penetrating the surface.
ns.resolveCollision(cList.collision[i].point,
cList.collision[i].normal);
colliding = collided = true;
// Keep track of objects we collide with
if (!isGhost() && c.object->getTypeMask() & ShapeBaseObjectType) {
ShapeBase* col = static_cast<ShapeBase*>(c.object);
queueCollision(col,v - col->getVelocity());
}
}
}
}
} while (colliding);
return collided;
}
//----------------------------------------------------------------------------
/** Resolve contact forces
Resolve contact forces using the "penalty" method. Forces are generated based
on the depth of penetration and the moment of inertia at the point of contact.
*/
bool Vehicle::resolveContacts(Rigid& ns,CollisionList& cList,F32 dt)
{
// Use spring forces to manage contact constraints.
bool collided = false;
Point3F t,p(0,0,0),l(0,0,0);
for (S32 i = 0; i < cList.count; i++) {
Collision& c = cList.collision[i];
if (c.distance < mDataBlock->collisionTol) {
// Velocity into the surface
Point3F v,r;
ns.getOriginVector(c.point,&r);
ns.getVelocity(r,&v);
F32 vn = mDot(v,c.normal);
// Only interested in velocities less than mDataBlock->contactTol,
// velocities greater than that are dealt with as collisions.
if (mFabs(vn) < mDataBlock->contactTol) {
collided = true;
// Penetration force. This is actually a spring which
// will seperate the body from the collision surface.
F32 zi = 2 * mFabs(mRigid.getZeroImpulse(r,c.normal));
F32 s = (mDataBlock->collisionTol - c.distance) * zi - ((vn / mDataBlock->contactTol) * zi);
Point3F f = c.normal * s;
// Friction impulse, calculated as a function of the
// amount of force it would take to stop the motion
// perpendicular to the normal.
Point3F uv = v - (c.normal * vn);
F32 ul = uv.len();
if (s > 0 && ul) {
uv /= -ul;
F32 u = ul * ns.getZeroImpulse(r,uv);
s *= mRigid.friction;
if (u > s)
u = s;
f += uv * u;
}
// Accumulate forces
p += f;
mCross(r,f,&t);
l += t;
}
}
}
// Contact constraint forces act over time...
ns.linMomentum += p * dt;
ns.angMomentum += l * dt;
ns.updateVelocity();
return true;
}
//----------------------------------------------------------------------------
bool Vehicle::resolveDisplacement(Rigid& ns,CollisionState *state, F32 dt)
{
SceneObject* obj = (state->a->getObject() == this)?
state->b->getObject(): state->a->getObject();
if (obj->isDisplacable() && ((obj->getTypeMask() & ShapeBaseObjectType) != 0))
{
// Try to displace the object by the amount we're trying to move
Point3F objNewMom = ns.linVelocity * obj->getMass() * 1.1;
Point3F objOldMom = obj->getMomentum();
Point3F objNewVel = objNewMom / obj->getMass();
Point3F myCenter;
Point3F theirCenter;
getWorldBox().getCenter(&myCenter);
obj->getWorldBox().getCenter(&theirCenter);
if (mDot(myCenter - theirCenter, objNewMom) >= 0.0f || objNewVel.len() < 0.01)
{
objNewMom = (theirCenter - myCenter);
objNewMom.normalize();
objNewMom *= 1.0f * obj->getMass();
objNewVel = objNewMom / obj->getMass();
}
obj->setMomentum(objNewMom);
if (obj->displaceObject(objNewVel * 1.1 * dt) == true)
{
// Queue collision and change in velocity
VectorF dv = (objOldMom - objNewMom) / obj->getMass();
queueCollision(static_cast<ShapeBase*>(obj), dv);
return true;
}
}
return false;
}
//----------------------------------------------------------------------------
void Vehicle::updateWorkingCollisionSet(const U32 mask)
{
// First, we need to adjust our velocity for possible acceleration. It is assumed
// that we will never accelerate more than 20 m/s for gravity, plus 30 m/s for
// jetting, and an equivalent 10 m/s for vehicle accel. We also assume that our
// working list is updated on a Tick basis, which means we only expand our box by
// the possible movement in that tick, plus some extra for caching purposes
Box3F convexBox = mConvex.getBoundingBox(getTransform(), getScale());
F32 len = (mRigid.linVelocity.len() + 50) * TickSec;
F32 l = (len * 1.1) + 0.1; // fudge factor
convexBox.min -= Point3F(l, l, l);
convexBox.max += Point3F(l, l, l);
disableCollision();
mConvex.updateWorkingList(convexBox, mask);
enableCollision();
}
//----------------------------------------------------------------------------
/** Check collisions with trigger and items
Perform a container search using the current bounding box
of the main body, wheels are not included. This method should
only be called on the server.
*/
void Vehicle::checkTriggers()
{
Box3F bbox = mConvex.getBoundingBox(getTransform(), getScale());
gServerContainer.findObjects(bbox,sTriggerMask,findCallback,this);
}
/** The callback used in by the checkTriggers() method.
The checkTriggers method uses a container search which will
invoke this callback on each obj that matches.
*/
void Vehicle::findCallback(SceneObject* obj,void *key)
{
Vehicle* vehicle = reinterpret_cast<Vehicle*>(key);
U32 objectMask = obj->getTypeMask();
// Check: triggers, corpses and items, basically the same things
// that the player class checks for
if (objectMask & TriggerObjectType) {
Trigger* pTrigger = static_cast<Trigger*>(obj);
pTrigger->potentialEnterObject(vehicle);
}
else if (objectMask & CorpseObjectType) {
ShapeBase* col = static_cast<ShapeBase*>(obj);
vehicle->queueCollision(col,vehicle->getVelocity() - col->getVelocity());
}
else if (objectMask & ItemObjectType) {
Item* item = static_cast<Item*>(obj);
if (vehicle != item->getCollisionObject())
vehicle->queueCollision(item,vehicle->getVelocity() - item->getVelocity());
}
}
//----------------------------------------------------------------------------
void Vehicle::writePacketData(GameConnection *connection, BitStream *stream)
{
Parent::writePacketData(connection, stream);
mathWrite(*stream, mSteering);
mathWrite(*stream, mRigid.linPosition);
mathWrite(*stream, mRigid.angPosition);
mathWrite(*stream, mRigid.linMomentum);
mathWrite(*stream, mRigid.angMomentum);
stream->writeFlag(mRigid.atRest);
stream->writeFlag(mContacts.count == 0);
stream->writeFlag(mDisableMove);
stream->setCompressionPoint(mRigid.linPosition);
}
void Vehicle::readPacketData(GameConnection *connection, BitStream *stream)
{
Parent::readPacketData(connection, stream);
mathRead(*stream, &mSteering);
mathRead(*stream, &mRigid.linPosition);
mathRead(*stream, &mRigid.angPosition);
mathRead(*stream, &mRigid.linMomentum);
mathRead(*stream, &mRigid.angMomentum);
mRigid.atRest = stream->readFlag();
if (stream->readFlag())
mContacts.count = 0;
// Update the rigid state based on the new information
mRigid.updateInertialTensor();
mRigid.updateVelocity();
mRigid.updateCenterOfMass();
mDisableMove = stream->readFlag();
stream->setCompressionPoint(mRigid.linPosition);
}
//----------------------------------------------------------------------------
U32 Vehicle::packUpdate(NetConnection *con, U32 mask, BitStream *stream)
{
U32 retMask = Parent::packUpdate(con, mask, stream);
stream->writeFlag(mJetting);
// The rest of the data is part of the control object packet update.
// If we're controlled by this client, we don't need to send it.
if (stream->writeFlag(getControllingClient() == con && !(mask & InitialUpdateMask)))
return retMask;
F32 yaw = (mSteering.x + mDataBlock->maxSteeringAngle) / (2 * mDataBlock->maxSteeringAngle);
F32 pitch = (mSteering.y + mDataBlock->maxSteeringAngle) / (2 * mDataBlock->maxSteeringAngle);
stream->writeFloat(yaw,9);
stream->writeFloat(pitch,9);
mDelta.move.pack(stream);
if (stream->writeFlag(mask & PositionMask))
{
stream->writeCompressedPoint(mRigid.linPosition);
mathWrite(*stream, mRigid.angPosition);
mathWrite(*stream, mRigid.linMomentum);
mathWrite(*stream, mRigid.angMomentum);
stream->writeFlag(mRigid.atRest);
}
// send energy only to clients which need it
bool found = false;
if (mask & EnergyMask)
{
for (ShapeBase* ptr = getMountList(); ptr; ptr = ptr->getMountLink())
{
GameConnection * controllingClient = ptr->getControllingClient();
if(controllingClient == con)
{
if(controllingClient->getControlObject() != this)
found = true;
break;
}
}
}
// write it...
if(stream->writeFlag(found))
stream->writeFloat(mClampF(getEnergyValue(), 0.f, 1.f), 8);
return retMask;
}
void Vehicle::unpackUpdate(NetConnection *con, BitStream *stream)
{
Parent::unpackUpdate(con,stream);
mJetting = stream->readFlag();
if (stream->readFlag())
return;
F32 yaw = stream->readFloat(9);
F32 pitch = stream->readFloat(9);
mSteering.x = (2 * yaw * mDataBlock->maxSteeringAngle) - mDataBlock->maxSteeringAngle;
mSteering.y = (2 * pitch * mDataBlock->maxSteeringAngle) - mDataBlock->maxSteeringAngle;
mDelta.move.unpack(stream);
if (stream->readFlag()) {
mPredictionCount = sMaxPredictionTicks;
F32 speed = mRigid.linVelocity.len();
mDelta.warpRot[0] = mRigid.angPosition;
// Read in new position and momentum values
stream->readCompressedPoint(&mRigid.linPosition);
mathRead(*stream, &mRigid.angPosition);
mathRead(*stream, &mRigid.linMomentum);
mathRead(*stream, &mRigid.angMomentum);
mRigid.atRest = stream->readFlag();
mRigid.updateVelocity();
if (isProperlyAdded()) {
// Determin number of ticks to warp based on the average
// of the client and server velocities.
Point3F cp = mDelta.pos + mDelta.posVec * mDelta.dt;
mDelta.warpOffset = mRigid.linPosition - cp;
// Calc the distance covered in one tick as the average of
// the old speed and the new speed from the server.
F32 dt,as = (speed + mRigid.linVelocity.len()) * 0.5 * TickSec;
// Cal how many ticks it will take to cover the warp offset.
// If it's less than what's left in the current tick, we'll just
// warp in the remaining time.
if (!as || (dt = mDelta.warpOffset.len() / as) > sMaxWarpTicks)
dt = mDelta.dt + sMaxWarpTicks;
else
dt = (dt <= mDelta.dt)? mDelta.dt : mCeil(dt - mDelta.dt) + mDelta.dt;
// Adjust current frame interpolation
if (mDelta.dt) {
mDelta.pos = cp + (mDelta.warpOffset * (mDelta.dt / dt));
mDelta.posVec = (cp - mDelta.pos) / mDelta.dt;
QuatF cr;
cr.interpolate(mDelta.rot[1],mDelta.rot[0],mDelta.dt);
mDelta.rot[1].interpolate(cr,mRigid.angPosition,mDelta.dt / dt);
mDelta.rot[0].extrapolate(mDelta.rot[1],cr,mDelta.dt);
}
// Calculated multi-tick warp
mDelta.warpCount = 0;
mDelta.warpTicks = (S32)(mFloor(dt));
if (mDelta.warpTicks) {
mDelta.warpOffset = mRigid.linPosition - mDelta.pos;
mDelta.warpOffset /= mDelta.warpTicks;
mDelta.warpRot[0] = mDelta.rot[1];
mDelta.warpRot[1] = mRigid.angPosition;
}
}
else {
// Set the vehicle to the server position
mDelta.dt = 0;
mDelta.pos = mRigid.linPosition;
mDelta.posVec.set(0,0,0);
mDelta.rot[1] = mDelta.rot[0] = mRigid.angPosition;
mDelta.warpCount = mDelta.warpTicks = 0;
setPosition(mRigid.linPosition, mRigid.angPosition);
}
mRigid.updateCenterOfMass();
}
// energy?
if(stream->readFlag())
setEnergyLevel(stream->readFloat(8) * mDataBlock->maxEnergy);
}
//----------------------------------------------------------------------------
void Vehicle::initPersistFields()
{
Parent::initPersistFields();
addField("disableMove", TypeBool, Offset(mDisableMove, Vehicle));
}
void Vehicle::mountObject(ShapeBase* obj, U32 node)
{
Parent::mountObject(obj, node);
// Clear objects off the working list that are from objects mounted to us.
// (This applies mostly to players...)
for (CollisionWorkingList* itr = mConvex.getWorkingList().wLink.mNext; itr != &mConvex.getWorkingList(); itr = itr->wLink.mNext) {
if (itr->mConvex->getObject() == obj) {
CollisionWorkingList* cl = itr;
itr = itr->wLink.mPrev;
cl->free();
}
}
}
//----------------------------------------------------------------------------
void Vehicle::updateLiftoffDust( F32 dt )
{
if( !mDustEmitterList[0] ) return;
Point3F startPos = getPosition();
Point3F endPos = startPos + Point3F( 0.0, 0.0, -mDataBlock->triggerDustHeight );
RayInfo rayInfo;
if( !getContainer()->castRay( startPos, endPos, TerrainObjectType, &rayInfo ) )
{
return;
}
TerrainBlock* tBlock = static_cast<TerrainBlock*>(rayInfo.object);
S32 mapIndex = tBlock->mMPMIndex[0];
MaterialPropertyMap* pMatMap = static_cast<MaterialPropertyMap*>(Sim::findObject("MaterialPropertyMap"));
const MaterialPropertyMap::MapEntry* pEntry = pMatMap->getMapEntryFromIndex(mapIndex);
if(pEntry)
{
S32 x;
ColorF colorList[ParticleEngine::PC_COLOR_KEYS];
for(x = 0; x < 2; ++x)
colorList[x].set( pEntry->puffColor[x].red, pEntry->puffColor[x].green, pEntry->puffColor[x].blue, pEntry->puffColor[x].alpha );
for(x = 2; x < ParticleEngine::PC_COLOR_KEYS; ++x)
colorList[x].set( 1.0, 1.0, 1.0, 0.0 );
mDustEmitterList[0]->setColors( colorList );
}
Point3F contactPoint = rayInfo.point + Point3F( 0.0, 0.0, mDataBlock->dustHeight );
mDustEmitterList[0]->emitParticles( contactPoint, contactPoint, rayInfo.normal, getVelocity(), (U32)(dt * 1000) );
}
//----------------------------------------------------------------------------
void Vehicle::updateDamageSmoke( F32 dt )
{
for( S32 j=VehicleData::VC_NUM_DAMAGE_LEVELS-1; j>=0; j-- )
{
F32 damagePercent = mDamage / mDataBlock->maxDamage;
if( damagePercent >= mDataBlock->damageLevelTolerance[j] )
{
for( int i=0; i<mDataBlock->numDmgEmitterAreas; i++ )
{
MatrixF trans = getTransform();
Point3F offset = mDataBlock->damageEmitterOffset[i];
trans.mulP( offset );
Point3F emitterPoint = offset;
if( pointInWater(offset ) )
{
U32 emitterOffset = VehicleData::VC_BUBBLE_EMITTER;
if( mDamageEmitterList[emitterOffset] )
{
mDamageEmitterList[emitterOffset]->emitParticles( emitterPoint, emitterPoint, Point3F( 0.0, 0.0, 1.0 ), getVelocity(), (U32)( dt * 1000 ) );
}
}
else
{
if( mDamageEmitterList[i] )
{
mDamageEmitterList[i]->emitParticles( emitterPoint, emitterPoint, Point3F( 0.0, 0.0, 1.0 ), getVelocity(), (U32)(dt * 1000));
}
}
}
break;
}
}
}
//--------------------------------------------------------------------------
void Vehicle::updateFroth( F32 dt )
{
// update bubbles
Point3F moveDir = getVelocity();
Point3F contactPoint;
if( !collidingWithWater( contactPoint ) )
{
if(waterWakeHandle)
{
alxStop(waterWakeHandle);
waterWakeHandle = 0;
}
return;
}
F32 speed = moveDir.len();
if( speed < mDataBlock->splashVelEpsilon ) speed = 0.0;
U32 emitRate = (U32)(speed * mDataBlock->splashFreqMod * dt);
U32 i;
if(!waterWakeHandle)
waterWakeHandle = alxPlay(mDataBlock->waterSound[VehicleData::Wake], &getTransform());
alxSourceMatrixF(waterWakeHandle, &getTransform());
for( i=0; i<VehicleData::VC_NUM_SPLASH_EMITTERS; i++ )
{
if( mSplashEmitterList[i] )
{
mSplashEmitterList[i]->emitParticles( contactPoint, contactPoint, Point3F( 0.0, 0.0, 1.0 ),
moveDir, emitRate );
}
}
}
//--------------------------------------------------------------------------
// Returns true if vehicle is intersecting a water surface (roughly)
//--------------------------------------------------------------------------
bool Vehicle::collidingWithWater( Point3F &waterHeight )
{
Point3F curPos = getPosition();
F32 height = mFabs( mObjBox.max.z - mObjBox.min.z );
RayInfo rInfo;
if( gClientContainer.castRay( curPos + Point3F(0.0, 0.0, height), curPos, WaterObjectType, &rInfo) )
{
waterHeight = rInfo.point;
return true;
}
return false;
}
void Vehicle::setEnergyLevel(F32 energy)
{
Parent::setEnergyLevel(energy);
setMaskBits(EnergyMask);
}
//-----------------------------------------------------------------------------
//
void Vehicle::renderImage(SceneState *state, SceneRenderImage *image)
{
Parent::renderImage(state, image);
if (gShowBoundingBox) {
glDisable(GL_LIGHTING);
glPushMatrix();
dglMultMatrix(&getRenderTransform());
// Box for the center of Mass
glDisable(GL_DEPTH_TEST);
glColor3f(1, 1, 1);
wireCube(Point3F(0.1,0.1,0.1),mDataBlock->massCenter);
glPopMatrix();
// Collision points
for (int i = 0; i < mCollisionList.count; i++) {
glColor3f(0, 0, 1);
Collision& collision = mCollisionList.collision[i];
wireCube(Point3F(0.05,0.05,0.05),collision.point);
glColor3f(1, 1, 1);
glBegin(GL_LINES);
glVertex3fv(collision.point);
glVertex3fv(collision.point + collision.normal * 0.05);
glEnd();
}
// Build and render the collision polylist which is returned
// in the server's world space.
ClippedPolyList polyList;
polyList.mPlaneList.setSize(6);
polyList.mPlaneList[0].set(getWorldBox().min,VectorF(-1,0,0));
polyList.mPlaneList[1].set(getWorldBox().min,VectorF(0,-1,0));
polyList.mPlaneList[2].set(getWorldBox().min,VectorF(0,0,-1));
polyList.mPlaneList[3].set(getWorldBox().max,VectorF(1,0,0));
polyList.mPlaneList[4].set(getWorldBox().max,VectorF(0,1,0));
polyList.mPlaneList[5].set(getWorldBox().max,VectorF(0,0,1));
Box3F dummyBox;
SphereF dummySphere;
buildPolyList(&polyList, dummyBox, dummySphere);
polyList.render();
//
glEnable(GL_DEPTH_TEST);
glEnable(GL_LIGHTING);
}
}
//-----------------------------------------------------------------------------
// Demonstrates adding rendering to mounted objects.
//
void Vehicle::renderMountedImage
(SceneState *state, ShapeImageRenderImage *image)
{
Parent::renderMountedImage(state, image);
if (gShowBoundingBox) {
U32 index = image->mIndex;
if (mMountedImageList[index].dataBlock != NULL) {
Point3F muzzlePoint, muzzleVector, endpoint;
getMuzzlePoint(index, &muzzlePoint);
getMuzzleVector(index, &muzzleVector);
endpoint = muzzlePoint + muzzleVector * 250;
// Lighting has been installed by ShapeBase::renderObject. Switch lighting
// off while rendering the debug graphics.
glDisable(GL_LIGHTING);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glLineWidth(1);
glBegin(GL_LINES);
glColor4ub(0, 255, 0, 255);
glVertex3fv(muzzlePoint);
glVertex3fv(endpoint);
glEnd();
glLineWidth(1);
glDisable(GL_BLEND);
glEnable(GL_LIGHTING);
}
}
}
bool Vehicle::getAIMove(Move *move)
{
return false;
}