385 lines
11 KiB
C++
Executable File
385 lines
11 KiB
C++
Executable File
/**********************************************************************
|
|
*<
|
|
FILE: IKHierarchy.h
|
|
|
|
DESCRIPTION: Geometrical representation of the ik problem. Note that
|
|
this file should not dependent on Max SDK, except for
|
|
some math classes, such as Matrix3, Point3, etc.
|
|
|
|
CREATED BY: Jianmin Zhao
|
|
|
|
HISTORY: created 16 March 2000
|
|
|
|
*> Copyright (c) 1994, All Rights Reserved.
|
|
**********************************************************************/
|
|
#ifndef __IKHierarchy__H
|
|
#define __IKHierarchy__H
|
|
|
|
namespace IKSys {
|
|
class ZeroPlaneMap {
|
|
public:
|
|
virtual Point3 operator()(const Point3& EEAxis) const =0;
|
|
virtual ~ZeroPlaneMap() {}
|
|
};
|
|
|
|
// A LinkChain consists of a RootLink and a number of Links.
|
|
// A RootLink consists of a rotation plus a rigidExtend. It transforms
|
|
// like this:
|
|
// To_Coordinate_Frame = rigidExtend * rotXYZ * From_Coordinate_Frame.
|
|
// where rotXYZ = Rot_x(rotXYZ[0]) * Rot_y(rotXYZ[1]) * Rot_z(rotXYZ[2]).
|
|
//
|
|
// * Note that not all the x, y, and z, are degrees of freedom. Only
|
|
// Active() ones are. We put the whole rotation here so that some
|
|
// solver may choose to use it as a full rotation and then clamp the
|
|
// result to the permissible range.
|
|
//
|
|
// * LinkMatrix(bool include_rot) returns rigidExtend if include_rot is
|
|
// false and returns the whole matrix from the From_Coordinate_Fram to
|
|
// To_Coordinate_Frame, i.e., rigidExtend*rotXYZ.rotXYZ are not all degrees of freedom. Only the active ones are.
|
|
//
|
|
// * Matrix3& ApplyLinkMatrix(Matrix3& mat, bool) applies the LinkMatrix() to
|
|
// the input matrix from the left, i.e., mat = LinkMatrix(bool)*mat,
|
|
// and returns the reference to the input matrix.
|
|
//
|
|
// * Matrix3& RotateByAxis(Matrix3&, unsigned i) pre-applies the
|
|
// rotation about x, y, or z (corresponding to i=0,1,or 2).
|
|
// Therefore, starting with the identity matrix, mat,
|
|
// ApplyLinkMatrix(
|
|
// RotateByAxis(
|
|
// RotateByAxis(
|
|
// RotateByAxis(mat, 2),
|
|
// 1),
|
|
// 0),
|
|
// false)
|
|
// should equal to LinkMatrix(true).
|
|
//
|
|
class RootLink {
|
|
public:
|
|
RootLink():flags(7){} // x,y,z, are all active. No joint limits.
|
|
Point3 rotXYZ;
|
|
Point3 initXYZ;
|
|
Point3 llimits;
|
|
Point3 ulimits;
|
|
Matrix3 rigidExtend;
|
|
bool GetActive(unsigned i) const { return flags&(1<<i)?true:false;}
|
|
bool GetLLimited(unsigned i) const { return flags&(1<<(i+3))?true:false;}
|
|
bool GetULimited(unsigned i) const { return flags&(1<<(i+6))?true:false;}
|
|
Matrix3& RotateByAxis(Matrix3& mat, unsigned i) const;
|
|
Matrix3 LinkMatrix(bool include_rot) const;
|
|
Matrix3& ApplyLinkMatrix(Matrix3& mat, bool include_rot) const;
|
|
// Set methods:
|
|
//
|
|
void SetActive(unsigned i, bool s);
|
|
void SetLLimited(unsigned i, bool s);
|
|
void SetULimited(unsigned i, bool s);
|
|
private:
|
|
unsigned flags;
|
|
};
|
|
|
|
// A Link is a 1-dof rotation followed by a rigidExtend. The dof
|
|
// axis is specified by dofAxis. It is always active.
|
|
//
|
|
// * LinkMatrix(true) == rigidExtend * Rotation(dofAxis, dofValue).
|
|
// LinkMatrix(false) == rigidExtend.
|
|
//
|
|
// * Matrix3& ApplyLinkMatrix(Matrix3& mat, bool) pre-applies the
|
|
// LinkMatrix(bool) to the input matrix, mat.
|
|
//
|
|
// * A typical 3-dof (xyz) joint is decomposed into three links. z and
|
|
// y dofs don't have rigid extension, called NullLink(). Let's use
|
|
// ++o
|
|
// to denote NullLink() and
|
|
// ---o
|
|
// to denote !NullLink(). Then, a 3-dof joint will be decomposed into
|
|
// three Links, as:
|
|
// ---o++o++o
|
|
// x y z
|
|
//
|
|
// * For an xyz rotation joint, if y is not active (Active unchecked),
|
|
// then y will be absorbed into the z-link, as:
|
|
// ---o---o
|
|
// x z
|
|
// In this case, the z-link is not NullLink(). But its length is
|
|
// zero. It is called ZeroLengh() link.
|
|
//
|
|
class Link {
|
|
public:
|
|
Link():rigidExtend(0),dofAxis(RotZ){}
|
|
~Link(){if (rigidExtend) delete rigidExtend; rigidExtend = 0;}
|
|
enum DofAxis {
|
|
TransX,
|
|
TransY,
|
|
TransZ,
|
|
RotX,
|
|
RotY,
|
|
RotZ
|
|
};
|
|
DofAxis dofAxis;
|
|
float dofValue;
|
|
float initValue;
|
|
Point2 limits;
|
|
bool NullLink() const {return rigidExtend?false:true;}
|
|
bool ZeroLength() const {
|
|
return NullLink() ? true :
|
|
(rigidExtend->GetIdentFlags() & POS_IDENT) ? true : false; }
|
|
bool LLimited() const { return llimited?true:false; }
|
|
bool ULimited() const { return ulimited?true:false; }
|
|
Matrix3 DofMatrix() const;
|
|
Matrix3& DofMatrix(Matrix3& mat) const;
|
|
Matrix3 LinkMatrix(bool include_dof =true) const;
|
|
Matrix3& ApplyLinkMatrix(Matrix3& mat, bool include_dof =true) const;
|
|
// Set methods:
|
|
//
|
|
void SetLLimited(bool s) { llimited = s?1:0; }
|
|
void SetULimited(bool s) { ulimited = s?1:0; }
|
|
void SetRigidExtend(const Matrix3& mat);
|
|
private:
|
|
Matrix3* rigidExtend;
|
|
byte llimited : 1;
|
|
byte ulimited : 1;
|
|
};
|
|
|
|
// A LinkChain consists of a RootLink and LinkCount() of Links.
|
|
//
|
|
// * parentMatrix is where the root joint starts with respect to the
|
|
// world. It should not concern the solver. Solvers should derive their
|
|
// solutions in the parent space.
|
|
//
|
|
// * goal is represented in the parent space, i.e.,
|
|
// goal_in_world = goal * parentMatrix
|
|
//
|
|
// * Bone(): The Link of index i may be a NullLink(). Bone(i) gives
|
|
// the index j so that j >= i and LinkOf(j).NullLink() is false. If j
|
|
// >= LinkCount() means that the chain ends up with NullLink().
|
|
//
|
|
// * PreBone(i) gives the index, j, so that j < i and LinkOf(j) is not
|
|
// NullLink(). For the following 3-dof joint:
|
|
// ---o++o++o---o
|
|
// i
|
|
// Bone(i) == i+1, and PreBone(i) == i-2. Therefore, degrees of
|
|
// freedom of LinkOf(i) == Bone(i) - PreBone(i).
|
|
//
|
|
// * A typical two bone chain with elbow being a ball joint has this
|
|
// structure:
|
|
// ---o++o++o---O
|
|
// 2 1 0 rootLink
|
|
// It has 3 links in addition to the root link.
|
|
//
|
|
// * A two-bone chain with the elbow being a hinge joint has this
|
|
// structure:
|
|
// ---o---O
|
|
// 0 rootLink
|
|
// It has one link. Geometrically, the axis of LinkOf(0) should be
|
|
// perpendicular to the two bones.
|
|
//
|
|
// * The matrix at the end effector is
|
|
// End_Effector_matrix == LinkOf(n-1).LinkMatrix(true) * ... *
|
|
// LinkOf(0).LinkMatrix(true) * rootLink.LinkMatrix(true).
|
|
//
|
|
// * swivelAngle, chainNormal, and defaultZeroMap concerns solvers that
|
|
// answer true to IKSolver::UseSwivelAngle().
|
|
//
|
|
// * chainNormal is the normal to the plane that is intrinsic to the
|
|
// chain when it is constructed. It is represented in the object space
|
|
// of the root joint.
|
|
//
|
|
// * A zero-map is a map that maps the end effector axis (EEA) to a
|
|
// plane normal perpendicular to the EEA. The IK System will provide a
|
|
// default one to the solver. However, a solver may choose to use its
|
|
// own.
|
|
//
|
|
// * Given the swivelAngle, the solver is asked to adjust the rotation
|
|
// at the root joint, root_joint_rotation, so that:
|
|
// (A) EEA stays fixed
|
|
// (B) chainNormal * root_joint_rotation
|
|
// == zeroMap(EEA) * RotationAboutEEA(swivelAngle)
|
|
// By definition, zeroMap(EEA) is always perpendicular to EEA. At the
|
|
// initial pose, chainNormal is also guarranteed to be perpendicular
|
|
// to zeroMap(EEA). When it is not, root_joint_rotation has to
|
|
// maintain (A) absolutely and satisfy (B) as good as it is possible.
|
|
//
|
|
class LinkChain {
|
|
public:
|
|
enum SAParentSpace {
|
|
kSAInGoal,
|
|
kSAInStartJoint
|
|
};
|
|
|
|
LinkChain():links(0),linkCount(0),defaultZeroMap(0),swivelAngle(0){}
|
|
LinkChain(unsigned lc):linkCount(lc),defaultZeroMap(0),swivelAngle(0)
|
|
{links = new Link[lc];}
|
|
virtual ~LinkChain(){delete[] links; links = NULL;}
|
|
virtual void* GetInterface(ULONG i) const { return NULL; }
|
|
Matrix3 parentMatrix;
|
|
RootLink rootLink;
|
|
const Link& LinkOf(unsigned i) const {return links[i];}
|
|
Link& LinkOf(unsigned i) {return links[i];}
|
|
unsigned LinkCount() const { return linkCount; }
|
|
int PreBone(unsigned i) const;
|
|
unsigned Bone(unsigned i) const;
|
|
bool useVHTarget;
|
|
union {
|
|
float swivelAngle;
|
|
float vhTarget[3];
|
|
};
|
|
SAParentSpace swivelAngleParent;
|
|
Point3 chainNormal; // plane normal
|
|
const ZeroPlaneMap* defaultZeroMap;
|
|
Matrix3 goal;
|
|
protected:
|
|
void SetLinkCount(unsigned lc){
|
|
delete links;
|
|
linkCount = lc;
|
|
links = new Link[linkCount];}
|
|
private:
|
|
Link* links;
|
|
unsigned linkCount;
|
|
};
|
|
|
|
// Inlines:
|
|
//
|
|
inline void RootLink::SetActive(unsigned i, bool s)
|
|
{
|
|
unsigned mask = 1 << i;
|
|
if (s) flags |= mask;
|
|
else flags &= ~mask;
|
|
}
|
|
|
|
inline void RootLink::SetLLimited(unsigned i, bool s)
|
|
{
|
|
unsigned mask = 1 << (3 + i);
|
|
if (s) flags |= mask;
|
|
else flags &= ~mask;
|
|
}
|
|
|
|
inline void RootLink::SetULimited(unsigned i, bool s)
|
|
{
|
|
unsigned mask = 1 << (6 + i);
|
|
if (s) flags |= mask;
|
|
else flags &= ~mask;
|
|
}
|
|
|
|
inline Matrix3& RootLink::RotateByAxis(Matrix3& mat, unsigned i) const
|
|
{
|
|
switch (i) {
|
|
case 0: mat.PreRotateX(rotXYZ[0]); return mat;
|
|
case 1: mat.PreRotateY(rotXYZ[1]); return mat;
|
|
case 2: mat.PreRotateZ(rotXYZ[2]); return mat;
|
|
default: return mat;
|
|
}
|
|
}
|
|
|
|
inline Matrix3& RootLink::ApplyLinkMatrix(Matrix3& mat, bool include_rot) const
|
|
{
|
|
if (include_rot) {
|
|
RotateByAxis(mat, 2);
|
|
RotateByAxis(mat, 1);
|
|
RotateByAxis(mat, 0);
|
|
}
|
|
mat = rigidExtend * mat;
|
|
return mat;
|
|
}
|
|
|
|
inline Matrix3 RootLink::LinkMatrix(bool include_rot) const
|
|
{
|
|
Matrix3 mat(TRUE);
|
|
return ApplyLinkMatrix(mat, include_rot);
|
|
}
|
|
|
|
inline void Link::SetRigidExtend(const Matrix3& mat)
|
|
{
|
|
if (mat.IsIdentity()) {
|
|
if (rigidExtend) {
|
|
delete rigidExtend;
|
|
rigidExtend = NULL;
|
|
}
|
|
} else {
|
|
if (rigidExtend) *rigidExtend = mat;
|
|
else rigidExtend = new Matrix3(mat);
|
|
}
|
|
}
|
|
|
|
inline Matrix3 Link::DofMatrix() const
|
|
{
|
|
switch (dofAxis) {
|
|
case TransX:
|
|
case TransY:
|
|
case TransZ:
|
|
{
|
|
Point3 p(0.0f,0.0f,0.0f);
|
|
p[dofAxis] = dofValue;
|
|
return TransMatrix(p);
|
|
}
|
|
case RotX:
|
|
return RotateXMatrix(dofValue);
|
|
case RotY:
|
|
return RotateYMatrix(dofValue);
|
|
case RotZ:
|
|
return RotateZMatrix(dofValue);
|
|
default:
|
|
return Matrix3(1);
|
|
}
|
|
}
|
|
|
|
inline Matrix3& Link::DofMatrix(Matrix3& mat) const
|
|
{
|
|
switch (dofAxis) {
|
|
case TransX:
|
|
case TransY:
|
|
case TransZ:
|
|
{
|
|
Point3 p(0.0f,0.0f,0.0f);
|
|
p[dofAxis] = dofValue;
|
|
mat.PreTranslate(p);
|
|
}
|
|
return mat;
|
|
case RotX:
|
|
mat.PreRotateX(dofValue); return mat;
|
|
case RotY:
|
|
mat.PreRotateY(dofValue); return mat;
|
|
case RotZ:
|
|
mat.PreRotateZ(dofValue); return mat;
|
|
default:
|
|
return mat;
|
|
}
|
|
}
|
|
|
|
inline Matrix3 Link::LinkMatrix(bool include_dof) const
|
|
{
|
|
Matrix3 ret;
|
|
if (include_dof) {
|
|
ret = DofMatrix();
|
|
ApplyLinkMatrix(ret, false);
|
|
} else {
|
|
ret = rigidExtend ? *rigidExtend : Matrix3(1);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
inline Matrix3& Link::ApplyLinkMatrix(Matrix3& mat, bool include_dof) const
|
|
// premultiply mat
|
|
{
|
|
if (include_dof) DofMatrix(mat);
|
|
if (rigidExtend) mat = *rigidExtend * mat;
|
|
return mat;
|
|
}
|
|
|
|
inline int LinkChain::PreBone(unsigned i) const
|
|
// return number < i. Returning -1 means that the previous bone is the root
|
|
// link.
|
|
{
|
|
for (int j = i - 1; j >= 0; --j)
|
|
if (!links[j].ZeroLength()) break;
|
|
return j;
|
|
}
|
|
|
|
inline unsigned LinkChain::Bone(unsigned i) const
|
|
// return number >= i.
|
|
{
|
|
for (size_t j = i; j < linkCount; ++j)
|
|
if (!links[j].ZeroLength()) break;
|
|
return j;
|
|
}
|
|
}; // namespace IKSys
|
|
#endif __IKHierarchy__H
|