tge/lib/maxsdk70/include/ikhierarchy.h
2017-04-17 06:17:10 -06:00

682 lines
20 KiB
C++
Executable File

/**********************************************************************
*<
FILE: IKHierarchy.h
DESCRIPTION: Geometrical representation of the ik problem. Note that
this file should not dependent on Max SDK, except for
some math classes, such as Matrix3, Point3, etc.
CREATED BY: Jianmin Zhao
HISTORY: created 16 March 2000
*> Copyright (c) 1994, All Rights Reserved.
**********************************************************************/
#ifndef __IKHierarchy__H
#define __IKHierarchy__H
class IIKChainControl;
namespace IKSys {
//--------------
class ZeroPlaneMap {
public:
virtual Point3 operator()(const Point3& EEAxis) const =0;
virtual ~ZeroPlaneMap() {}
};
const Interface_ID kGoalID(0x53937e2, 0x2be92941);
const Interface_ID kHIIKGoalID(0x2497c0e, 0x376f602a);
const Interface_ID kSplineIKGoalID(0x4ee7cd9, 0x68a54886);
enum SAParentSpace {
kSAInGoal,
kSAInStartJoint
};
// A LinkChain consists of a RootLink and a number of Links.
// A RootLink consists of a rotation plus a rigidExtend. It transforms
// like this:
// To_Coordinate_Frame = rigidExtend * rotXYZ * From_Coordinate_Frame.
// where rotXYZ = Rot_x(rotXYZ[0]) * Rot_y(rotXYZ[1]) * Rot_z(rotXYZ[2]).
//
// * Note that not all the x, y, and z, are degrees of freedom. Only
// Active() ones are. We put the whole rotation here so that some
// solver may choose to use it as a full rotation and then clamp the
// result to the permissible range.
//
// * LinkMatrix(bool include_rot) returns rigidExtend if include_rot is
// false and returns the whole matrix from the From_Coordinate_Fram to
// To_Coordinate_Frame, i.e., rigidExtend*rotXYZ.rotXYZ are not all degrees of freedom. Only the active ones are.
//
// * Matrix3& ApplyLinkMatrix(Matrix3& mat, bool) applies the LinkMatrix() to
// the input matrix from the left, i.e., mat = LinkMatrix(bool)*mat,
// and returns the reference to the input matrix.
//
// * Matrix3& RotateByAxis(Matrix3&, unsigned i) pre-applies the
// rotation about x, y, or z (corresponding to i=0,1,or 2).
// Therefore, starting with the identity matrix, mat,
// ApplyLinkMatrix(
// RotateByAxis(
// RotateByAxis(
// RotateByAxis(mat, 2),
// 1),
// 0),
// false)
// should equal to LinkMatrix(true).
//
class RootLink {
public:
RootLink():flags(7){} // x,y,z, are all active. No joint limits.
Point3 rotXYZ;
Point3 initXYZ;
Point3 llimits;
Point3 ulimits;
Matrix3 rigidExtend;
bool GetActive(unsigned i) const { return flags&(1<<i)?true:false;}
bool GetLLimited(unsigned i) const { return flags&(1<<(i+3))?true:false;}
bool GetULimited(unsigned i) const { return flags&(1<<(i+6))?true:false;}
Matrix3& RotateByAxis(Matrix3& mat, unsigned i) const;
Matrix3 LinkMatrix(bool include_rot) const;
Matrix3& ApplyLinkMatrix(Matrix3& mat, bool include_rot) const;
// Set methods:
//
void SetActive(unsigned i, bool s);
void SetLLimited(unsigned i, bool s);
void SetULimited(unsigned i, bool s);
private:
unsigned flags;
};
// A Link is a 1-dof rotation followed by a rigidExtend. The dof
// axis is specified by dofAxis. It is always active.
//
// * LinkMatrix(true) == rigidExtend * Rotation(dofAxis, dofValue).
// LinkMatrix(false) == rigidExtend.
//
// * Matrix3& ApplyLinkMatrix(Matrix3& mat, bool) pre-applies the
// LinkMatrix(bool) to the input matrix, mat.
//
// * A typical 3-dof (xyz) joint is decomposed into three links. z and
// y dofs don't have rigid extension, called NullLink(). Let's use
// ++o
// to denote NullLink() and
// ---o
// to denote !NullLink(). Then, a 3-dof joint will be decomposed into
// three Links, as:
// ---o++o++o
// x y z
//
// * For an xyz rotation joint, if y is not active (Active unchecked),
// then y will be absorbed into the z-link, as:
// ---o---o
// x z
// In this case, the z-link is not NullLink(). But its length is
// zero. It is called ZeroLengh() link.
//
class Link {
public:
Link():rigidExtend(0),dofAxis(RotZ){}
~Link(){if (rigidExtend) delete rigidExtend; rigidExtend = 0;}
enum DofAxis {
TransX,
TransY,
TransZ,
RotX,
RotY,
RotZ
};
DofAxis dofAxis;
float dofValue;
float initValue;
Point2 limits;
bool NullLink() const {return rigidExtend?false:true;}
bool ZeroLength() const {
return NullLink() ? true :
(rigidExtend->GetIdentFlags() & POS_IDENT) ? true : false; }
bool LLimited() const { return llimited?true:false; }
bool ULimited() const { return ulimited?true:false; }
Matrix3 DofMatrix() const;
Matrix3& DofMatrix(Matrix3& mat) const;
Matrix3 LinkMatrix(bool include_dof =true) const;
Matrix3& ApplyLinkMatrix(Matrix3& mat, bool include_dof =true) const;
// Set methods:
//
void SetLLimited(bool s) { llimited = s?1:0; }
void SetULimited(bool s) { ulimited = s?1:0; }
void SetRigidExtend(const Matrix3& mat);
private:
Matrix3* rigidExtend;
byte llimited : 1;
byte ulimited : 1;
};
// A LinkChain consists of a RootLink and LinkCount() of Links.
//
// * parentMatrix is where the root joint starts with respect to the
// world. It should not concern the solver. Solvers should derive their
// solutions in the parent space.
//
// * goal is represented in the parent space, i.e.,
// goal_in_world = goal * parentMatrix
//
// * Bone(): The Link of index i may be a NullLink(). Bone(i) gives
// the index j so that j >= i and LinkOf(j).NullLink() is false. If j
// >= LinkCount() means that the chain ends up with NullLink().
//
// * PreBone(i) gives the index, j, so that j < i and LinkOf(j) is not
// NullLink(). For the following 3-dof joint:
// ---o++o++o---o
// i
// Bone(i) == i+1, and PreBone(i) == i-2. Therefore, degrees of
// freedom of LinkOf(i) == Bone(i) - PreBone(i).
//
// * A typical two bone chain with elbow being a ball joint has this
// structure:
// ---o++o++o---O
// 2 1 0 rootLink
// It has 3 links in addition to the root link.
//
// * A two-bone chain with the elbow being a hinge joint has this
// structure:
// ---o---O
// 0 rootLink
// It has one link. Geometrically, the axis of LinkOf(0) should be
// perpendicular to the two bones.
//
// * The matrix at the end effector is
// End_Effector_matrix == LinkOf(n-1).LinkMatrix(true) * ... *
// LinkOf(0).LinkMatrix(true) * rootLink.LinkMatrix(true).
//
// * swivelAngle, chainNormal, and defaultZeroMap concerns solvers that
// answer true to IKSolver::UseSwivelAngle().
//
// * chainNormal is the normal to the plane that is intrinsic to the
// chain when it is constructed. It is represented in the object space
// of the root joint.
//
// * A zero-map is a map that maps the end effector axis (EEA) to a
// plane normal perpendicular to the EEA. The IK System will provide a
// default one to the solver. However, a solver may choose to use its
// own.
//
// * Given the swivelAngle, the solver is asked to adjust the rotation
// at the root joint, root_joint_rotation, so that:
// (A) EEA stays fixed
// (B) chainNormal * root_joint_rotation
// == zeroMap(EEA) * RotationAboutEEA(swivelAngle)
// By definition, zeroMap(EEA) is always perpendicular to EEA. At the
// initial pose, chainNormal is also guarranteed to be perpendicular
// to zeroMap(EEA). When it is not, root_joint_rotation has to
// maintain (A) absolutely and satisfy (B) as good as it is possible.
//
class LinkChain {
public:
LinkChain():links(0),linkCount(0) {}
LinkChain(unsigned lc):linkCount(lc) {links = new Link[lc];}
virtual ~LinkChain(){delete[] links; links = NULL;}
virtual void* GetInterface(ULONG i) const { return NULL; }
Matrix3 parentMatrix;
RootLink rootLink;
const Link& LinkOf(unsigned i) const {return links[i];}
Link& LinkOf(unsigned i) {return links[i];}
unsigned LinkCount() const { return linkCount; }
int PreBone(unsigned i) const;
unsigned Bone(unsigned i) const;
BaseInterface* GetIKGoal() { return ikGoal; }
void SetIKGoal(BaseInterface* ikgoal) { ikGoal = ikgoal; }
void ReleaseIKGoal();
protected:
void SetLinkCount(unsigned lc);
private:
Link* links;
unsigned linkCount;
BaseInterface* ikGoal;
};
//
// A convenience class that helps to iterate over the LinkChain on
// the basis of joint.
// Joint is defined as follows.
// (A) The RootLink is a rotaional joint.
// (B) A consecutive series of Link's of the same type
// (sliding v. rotational) of which only the last Link may have
// NullLink() being false.
// Steps to iterate, supposing linkChain is a LinkChain:
// * IterJoint iter(linkChain); -- make an iterator.
// * iter.InitJointAngles(); -- Set all the link variables to initial values.
// * iter.SetSkipSliding(true); -- If you want to skip sliding joints.
// If your solver does not use sliding joint, they won't be present
// in the linkChain and there is no need to call it.
// * iter.Begin(true/false); -- Begin the iteration and this is the first
// joint. Pass true as the argument if you want the first joint to be
// place in the world, according to linkChain.parentMatrix.
// * iter.GetJointType(); -- Is this joint rotational or sliding?
// * iter.DofCount(); -- How many degrees of freedom does it have?
// * iter.GetJointAxes(); -- Axes of each degree of freedom. It is represented
// as char[3]. The usual xyz joint is "xyz". If this 1D of y, it is
// "__y", 2D of xy as "_xy", etc.
// * iter.ProximalFrame(); -- The base reference frame of this joint. The
// joint axes are relative to it.
// * iter.DistalFrame(); -- The reference frame that the joint brings the
// base frame to.
// * iter.Pivot() -- The pivot of this joint.
// * iter.DistalEnd() -- The end point the rigid link attached to this joint.
// If this is not the last joint, it is the pivot of the next joint.
// * iter.SetJointAngles(ang); -- Assign "ang" to joint angles. ang is a
// Point3. If this is not a 3D joint, values are retrieved from ang
// by name. For "_zx" joint, for instance, ang.z will be assigned to
// the z-axis, and ang.x will be assigned to the x-axis.
// After it is called, DistalFrame() and DistalEnd() will be updated.
// * iter.Next(); -- This brings to the next joint, if returns true. It is
// the last joint if returns false.
//
class IterJoint {
public:
struct JointAxes {
char& operator[](int i) { return mAxes[i]; }
char mAxes[3];
};
enum JointType {
SlidingJoint,
RotationalJoint
};
IterJoint(LinkChain& lc)
: mLinkChain(lc)
, mSkipSlide(false)
{}
void InitJointAngles();
void SetSkipSliding(bool skip) { mSkipSlide = skip; }
void Begin(bool in_world);
JointType GetJointType() const;
int DofCount() const { return mBegin==-1 ? 3: mEnd-mBegin; }
JointAxes GetJointAxes() const;
const Matrix3& ProximalFrame() const { return mMat0; }
const Matrix3& DistalFrame() const { return mMat; }
Point3 Pivot() const { return mMat0.GetTrans(); }
Point3 DistalEnd() const { return mMat.GetTrans(); }
void SetJointAngles(const Point3&);
Point3 GetJointAngles() const;
bool Next();
protected:
void SkipSliding();
private:
Matrix3 mMat0;
Matrix3 mMat;
LinkChain& mLinkChain;
bool mSkipSlide;
short mBegin;
short mEnd;
short mNext;
};
// IK Goals:
//
class IIKGoal : public BaseInterface {
public:
BaseInterface* GetInterface(Interface_ID id) { if (id == kGoalID) return this; else return BaseInterface::GetInterface(id); }
Interface_ID GetID() { return kGoalID; }
LifetimeType LifetimeControl() { return wantsRelease; }
void ReleaseInterface() { delete this; }
virtual ~IIKGoal() {}
};
class IHIIKGoal: public IIKGoal {
public:
// Due to BaseInterface
BaseInterface* GetInterface(Interface_ID id) { if (id == kHIIKGoalID) return this; else return IIKGoal::GetInterface(id); }
Interface_ID GetID() { return kHIIKGoalID; }
virtual bool UseVHTarget() const =0;
virtual float SwivelAngle() const =0;
virtual const Point3& VHTarget() const =0;
virtual SAParentSpace SwivelAngleParent() const =0;
virtual const Point3& ChainNormal() const =0;
virtual const ZeroPlaneMap* DefaultZeroMap() const =0;
virtual Matrix3& Goal() =0;
};
class ISplineIKGoal: public IIKGoal {
public:
// Due to BaseInterface
BaseInterface* GetInterface(Interface_ID id) { if (id == kSplineIKGoalID) return this; else return IIKGoal::GetInterface(id); }
Interface_ID GetID() { return kSplineIKGoalID; }
virtual float StartParam() const = 0;
virtual float EndParam() const = 0;
//watje
virtual Point3 SplinePosAt(float, BOOL, BOOL = FALSE) const = 0;
virtual Point3 SplineTangentAt(float, BOOL) const = 0;
virtual const Matrix3& Goal() const = 0;
virtual INode* GetGoalNode() const = 0;
virtual IIKChainControl* GetChainControl() = 0;
virtual float GetSplineLength() const = 0;
virtual float TwistHStartAngle() const = 0;
virtual float TwistHEndAngle() const = 0;
virtual INode* StartJoint() const = 0;
virtual INode* EndJoint() const = 0;
virtual const ZeroPlaneMap* DefaultZeroMap() const = 0;
virtual BOOL IsClosed() const = 0;
virtual const Matrix3& TwistParent() const = 0;
};
// Inlines:
// ------------------------------------------------
inline void RootLink::SetActive(unsigned i, bool s)
{
unsigned mask = 1 << i;
if (s) flags |= mask;
else flags &= ~mask;
}
inline void RootLink::SetLLimited(unsigned i, bool s)
{
unsigned mask = 1 << (3 + i);
if (s) flags |= mask;
else flags &= ~mask;
}
inline void RootLink::SetULimited(unsigned i, bool s)
{
unsigned mask = 1 << (6 + i);
if (s) flags |= mask;
else flags &= ~mask;
}
inline Matrix3& RootLink::RotateByAxis(Matrix3& mat, unsigned i) const
{
switch (i) {
case 0: mat.PreRotateX(rotXYZ[0]); return mat;
case 1: mat.PreRotateY(rotXYZ[1]); return mat;
case 2: mat.PreRotateZ(rotXYZ[2]); return mat;
default: return mat;
}
}
inline Matrix3& RootLink::ApplyLinkMatrix(Matrix3& mat, bool include_rot) const
{
if (include_rot) {
RotateByAxis(mat, 2);
RotateByAxis(mat, 1);
RotateByAxis(mat, 0);
}
mat = rigidExtend * mat;
return mat;
}
inline Matrix3 RootLink::LinkMatrix(bool include_rot) const
{
Matrix3 mat(TRUE);
return ApplyLinkMatrix(mat, include_rot);
}
inline void Link::SetRigidExtend(const Matrix3& mat)
{
if (mat.IsIdentity()) {
if (rigidExtend) {
delete rigidExtend;
rigidExtend = NULL;
}
} else {
if (rigidExtend) *rigidExtend = mat;
else rigidExtend = new Matrix3(mat);
}
}
inline Matrix3 Link::DofMatrix() const
{
switch (dofAxis) {
case TransX:
case TransY:
case TransZ:
{
Point3 p(0.0f,0.0f,0.0f);
p[dofAxis] = dofValue;
return TransMatrix(p);
}
case RotX:
return RotateXMatrix(dofValue);
case RotY:
return RotateYMatrix(dofValue);
case RotZ:
return RotateZMatrix(dofValue);
default:
return Matrix3(1);
}
}
inline Matrix3& Link::DofMatrix(Matrix3& mat) const
{
switch (dofAxis) {
case TransX:
case TransY:
case TransZ:
{
Point3 p(0.0f,0.0f,0.0f);
p[dofAxis] = dofValue;
mat.PreTranslate(p);
}
return mat;
case RotX:
mat.PreRotateX(dofValue); return mat;
case RotY:
mat.PreRotateY(dofValue); return mat;
case RotZ:
mat.PreRotateZ(dofValue); return mat;
default:
return mat;
}
}
inline Matrix3 Link::LinkMatrix(bool include_dof) const
{
Matrix3 ret;
if (include_dof) {
ret = DofMatrix();
ApplyLinkMatrix(ret, false);
} else {
ret = rigidExtend ? *rigidExtend : Matrix3(1);
}
return ret;
}
inline Matrix3& Link::ApplyLinkMatrix(Matrix3& mat, bool include_dof) const
// premultiply mat
{
if (include_dof) DofMatrix(mat);
if (rigidExtend) mat = *rigidExtend * mat;
return mat;
}
inline int LinkChain::PreBone(unsigned i) const
// return number < i. Returning -1 means that the previous bone is the root
// link.
{
for (int j = i - 1; j >= 0; --j)
if (!links[j].ZeroLength()) break;
return j;
}
inline unsigned LinkChain::Bone(unsigned i) const
// return number >= i.
{
for (size_t j = i; j < linkCount; ++j)
if (!links[j].ZeroLength()) break;
return j;
}
inline void LinkChain::SetLinkCount(unsigned lc)
{
delete links;
linkCount = lc;
links = new Link[linkCount];
}
inline void LinkChain::ReleaseIKGoal() {
if (ikGoal) {
ikGoal->ReleaseInterface();
ikGoal = NULL;
}
}
inline IterJoint::JointType DofType(Link::DofAxis axis)
{
return axis < Link::RotX ? IterJoint::SlidingJoint : IterJoint::RotationalJoint;
}
inline void IterJoint::InitJointAngles()
{
mLinkChain.rootLink.rotXYZ = mLinkChain.rootLink.initXYZ;
for (size_t i = 0, n = mLinkChain.LinkCount(); i < n; ++i) {
Link& link = mLinkChain.LinkOf(i);
link.dofValue = link.initValue;
}
}
inline void IterJoint::SkipSliding()
//
// Pre-condition: mNext == mEnd
//
{
DbgAssert(mNext >= 0);
while ((unsigned)mNext < mLinkChain.LinkCount()) {
Link& link = mLinkChain.LinkOf(mNext);
if (DofType(link.dofAxis) == RotationalJoint) {
break;
} else {
link.ApplyLinkMatrix(mMat, true);
++mNext;
}
}
}
inline void IterJoint::Begin(bool in_world)
{
if (in_world) {
mMat0 = mLinkChain.parentMatrix;
} else {
mMat0.IdentityMatrix();
}
mMat = mMat0;
mLinkChain.rootLink.ApplyLinkMatrix(mMat, true);
mBegin = -1;
mNext = mEnd = 0;
if (mSkipSlide) SkipSliding();
}
inline IterJoint::JointType IterJoint::GetJointType() const
{
return mBegin == -1
? RotationalJoint
: DofType(mLinkChain.LinkOf(mBegin).dofAxis);
}
inline IterJoint::JointAxes IterJoint::GetJointAxes() const
{
JointAxes ret;
if (mBegin == -1) {
ret[0] = 'x';
ret[1] = 'y';
ret[2] = 'z';
} else {
for (int i = 2, j = mBegin; j < mEnd; ++j, --i) {
int axis = mLinkChain.LinkOf(j).dofAxis;
if (axis >= 3) axis -= 3;
ret[i] = 'x' + axis;
}
while (i >= 0) {
ret[i] = '_';
--i;
}
}
return ret;
}
inline Point3 IterJoint::GetJointAngles() const
{
if (mBegin == -1) {
// The root joint.
return mLinkChain.rootLink.rotXYZ;
} else {
DbgAssert(mBegin >= 0);
Point3 ret(0.0f, 0.0f, 0.0f);
for (int i = mBegin; i < mEnd; ++i) {
Link& link = mLinkChain.LinkOf(i);
unsigned axis = link.dofAxis < 3 ? link.dofAxis : link.dofAxis - 3;
ret[(int)axis] = link.dofValue;
}
return ret;
}
}
inline void IterJoint::SetJointAngles(const Point3& a)
{
if (mBegin == -1) {
// The root joint.
//
mLinkChain.rootLink.rotXYZ = a;
mMat = mMat0;
mLinkChain.rootLink.ApplyLinkMatrix(mMat, true);
} else {
DbgAssert(mBegin >= 0);
for (int i = mBegin; i < mEnd; ++i) {
Link& link = mLinkChain.LinkOf(i);
unsigned axis = link.dofAxis < 3 ? link.dofAxis : link.dofAxis - 3;
link.dofValue = a[axis];
if (i < mEnd - 1) {
link.DofMatrix(mMat);
} else {
link.ApplyLinkMatrix(mMat, true);
}
}
}
for (int i = mEnd; i < mNext; ++i) {
Link& link = mLinkChain.LinkOf(i);
link.ApplyLinkMatrix(mMat, true);
}
}
inline bool IterJoint::Next()
{
mBegin = mNext;
DbgAssert(mBegin >= 0);
if ((unsigned)mBegin >= mLinkChain.LinkCount()) {
mEnd = mNext;
return false;
}
mMat0 = mMat;
JointType jt = DofType(mLinkChain.LinkOf(mBegin).dofAxis);
mEnd = mBegin;
DbgAssert(mEnd >= 0);
while ((unsigned)mEnd < mLinkChain.LinkCount()) {
Link& link = mLinkChain.LinkOf(mEnd);
if (DofType(link.dofAxis) != jt)
break;
link.DofMatrix(mMat);
++mEnd;
if (!link.NullLink()) {
link.ApplyLinkMatrix(mMat, false);
break;
}
}
DbgAssert(mEnd - mBegin <= 3);
mNext = mEnd;
if (mSkipSlide) {
DbgAssert(jt == RotationalJoint);
SkipSliding();
}
return true;
}
}; // namespace IKSys
#endif __IKHierarchy__H